Spaces:
Sleeping
Sleeping
File size: 43,901 Bytes
f225817 049c77e f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 363a57d f225817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
import gradio as gr
import numpy as np
import cv2
import requests
import json
import base64
from PIL import Image
import io
import os
from dotenv import load_dotenv
from collections import defaultdict
import time
# Load environment variables
load_dotenv()
# Define API endpoint from environment variable
API_URL = os.getenv("API_URL", "http://122.155.170.240:81")
print(f"Using API URL: {API_URL}")
DEFAULT_CONFIDENCE = float(os.getenv("DEFAULT_CONFIDENCE_THRESHOLD", "0.25"))
def calculate_iou(box1, box2):
"""Calculate Intersection over Union (IoU) between two bounding boxes"""
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = area1 + area2 - intersection
return intersection / union if union > 0 else 0
def calculate_bbox_similarity(bbox1, bbox2):
"""Calculate similarity between two bounding boxes using IoU and center distance"""
try:
# Calculate IoU
iou = calculate_iou(bbox1, bbox2)
# Calculate center distance
center1 = get_box_center(bbox1)
center2 = get_box_center(bbox2)
if center1 is None or center2 is None:
return 0.0
distance = np.sqrt((center1[0] - center2[0])**2 + (center1[1] - center2[1])**2)
# Normalize distance based on bbox size
bbox_size = max(bbox1[2] - bbox1[0], bbox1[3] - bbox1[1])
normalized_distance = distance / max(bbox_size, 1)
# Combine IoU and distance for final similarity score
similarity = iou * 0.7 + max(0, 1 - normalized_distance * 0.3) * 0.3
return similarity
except Exception as e:
return 0.0
def get_box_center(bbox):
"""Calculate center point of bounding box"""
try:
# Handle different bbox formats (x,y,w,h) or (x1,y1,x2,y2)
if len(bbox) == 4:
if bbox[2] < bbox[0] or bbox[3] < bbox[1]: # If it's x1,y1,x2,y2 format
x = (bbox[0] + bbox[2]) / 2
y = (bbox[1] + bbox[3]) / 2
else: # If it's x,y,w,h format
x = bbox[0] + bbox[2]/2
y = bbox[1] + bbox[3]/2
else:
return None
return (x, y)
except Exception as e:
return None
def calculate_movement(prev_center, curr_center, min_movement=10):
"""Calculate if there's significant movement between frames"""
try:
if prev_center is None or curr_center is None:
return False
dx = curr_center[0] - prev_center[0]
dy = curr_center[1] - prev_center[1]
distance = np.sqrt(dx*dx + dy*dy)
return distance > min_movement
except Exception as e:
return False
class TrackedObject:
def __init__(self, obj_id, obj_class, bbox):
self.id = obj_id
self.class_name = obj_class
self.trajectory = [] # List of center points
self.bboxes = [] # List of bounding boxes
self.counted = False
self.last_seen = 0 # Frame number when last seen
self.first_seen = 0 # Frame number when first seen
self.frames_in_red_zone = 0 # Number of consecutive frames in red zone
self.warning_triggered = False # Whether warning has been triggered
self.red_zone_entry_frame = None # Frame when object entered red zone
self.similarity_scores = [] # Track similarity scores over time
self.add_detection(bbox)
def add_detection(self, bbox):
try:
center = get_box_center(bbox)
if center is not None:
self.trajectory.append(center)
self.bboxes.append(bbox)
# Keep only recent history to prevent memory issues
if len(self.trajectory) > 50:
self.trajectory = self.trajectory[-25:]
self.bboxes = self.bboxes[-25:]
except Exception as e:
pass
def has_movement(self, min_movement=10):
try:
if len(self.trajectory) < 2:
return False
return calculate_movement(self.trajectory[-2], self.trajectory[-1], min_movement)
except Exception as e:
return False
def update_red_zone_status(self, is_in_red_zone, frame_number):
"""Update red zone status and handle warnings"""
if is_in_red_zone:
if self.red_zone_entry_frame is None:
self.red_zone_entry_frame = frame_number
self.frames_in_red_zone += 1
# Check if warning should be triggered
if self.frames_in_red_zone > 3 and not self.warning_triggered:
self.warning_triggered = True
return True # Return True to indicate warning should be shown
else:
# Object left red zone, reset counters
self.frames_in_red_zone = 0
self.red_zone_entry_frame = None
self.warning_triggered = False
return False
def get_similarity_with(self, other_bbox, similarity_threshold=0.5):
"""Calculate similarity with another bounding box"""
if len(self.bboxes) == 0:
return 0.0
current_bbox = self.bboxes[-1]
return calculate_bbox_similarity(current_bbox, other_bbox)
def is_similar_object(obj1, obj2, similarity_threshold=0.6):
"""Check if two objects are similar based on class, position and bounding box similarity"""
try:
if obj1['class'] != obj2['class']:
return False
box1 = obj1['bbox']
box2 = obj2['bbox']
# Convert to x1,y1,x2,y2 format if needed
if len(box1) == 4 and len(box2) == 4:
if box1[2] < box1[0] or box1[3] < box1[1]: # Already in x1,y1,x2,y2
bbox1 = box1
else: # Convert from x,y,w,h to x1,y1,x2,y2
bbox1 = [box1[0], box1[1], box1[0] + box1[2], box1[1] + box1[3]]
if box2[2] < box2[0] or box2[3] < box2[1]: # Already in x1,y1,x2,y2
bbox2 = box2
else: # Convert from x,y,w,h to x1,y1,x2,y2
bbox2 = [box2[0], box2[1], box2[0] + box2[2], box2[1] + box2[3]]
similarity = calculate_bbox_similarity(bbox1, bbox2)
return similarity > similarity_threshold
return False
except Exception as e:
return False
# Global state for protection area and previous detections
class State:
def __init__(self):
self.protection_points = [] # Store clicked points
self.detected_segments = []
self.segment_image = None
self.selected_segments = []
self.previous_detections = None
self.cached_protection_area = None
self.current_image = None # Store current image for drawing
self.original_dims = None # Store original image dimensions
self.display_dims = None # Store display dimensions
self.tracked_objects = {} # Dictionary of tracked objects
self.next_obj_id = 0 # Counter for generating unique object IDs
self.object_count = defaultdict(int) # Count by class
self.frame_count = 0 # Count processed frames
self.red_zone_passed_objects = defaultdict(int) # Objects that passed through red zone
self.red_zone_warnings = [] # Store warning messages
self.time_window = 10 # Configurable time window for similarity comparison
self.similarity_threshold = 0.6 # Configurable similarity threshold
def reset_tracking(self):
"""Reset all tracking data"""
self.tracked_objects = {}
self.next_obj_id = 0
self.object_count = defaultdict(int)
self.frame_count = 0
self.red_zone_passed_objects = defaultdict(int)
self.red_zone_warnings = []
state = State()
def image_to_bytes(image):
"""Convert PIL Image to bytes for API request"""
# Log original image size
original_width, original_height = image.size
print(f"Original image dimensions: {original_width}x{original_height}")
# Convert image to bytes without resizing
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
print(f"Sending image with original dimensions: {original_width}x{original_height}")
return img_byte_arr.getvalue()
def base64_to_image(base64_str):
"""Convert base64 string to OpenCV image"""
img_data = base64.b64decode(base64_str)
nparr = np.frombuffer(img_data, np.uint8)
return cv2.imdecode(nparr, cv2.IMREAD_COLOR)
def opencv_to_pil(opencv_image):
"""Convert OpenCV image to PIL format"""
# Convert from BGR to RGB for PIL
rgb_image = cv2.cvtColor(opencv_image, cv2.COLOR_BGR2RGB)
return Image.fromarray(rgb_image)
def scale_point_to_original(x, y):
"""Scale display coordinates back to original image coordinates"""
if state.original_dims is None or state.display_dims is None:
return x, y
orig_w, orig_h = state.original_dims
disp_w, disp_h = state.display_dims
# Calculate scaling factors
scale_x = orig_w / disp_w
scale_y = orig_h / disp_h
# Scale the coordinates
orig_x = int(x * scale_x)
orig_y = int(y * scale_y)
return orig_x, orig_y
def scale_points_to_display(points):
"""Scale points from original image coordinates to display coordinates"""
if state.original_dims is None or state.display_dims is None:
return points
orig_w, orig_h = state.original_dims
disp_w, disp_h = state.display_dims
# Calculate scaling factors
scale_x = disp_w / orig_w
scale_y = disp_h / orig_h
# Scale all points
display_points = []
for point in points:
x = int(point[0] * scale_x)
y = int(point[1] * scale_y)
display_points.append([x, y])
return display_points
def draw_protection_area(image):
"""Draw protection area points and lines on the image"""
img = image.copy()
points = state.protection_points
# Draw existing points and lines
if len(points) > 0:
# Convert points to numpy array
points_array = np.array(points, dtype=np.int32)
# Draw lines between points
if len(points) > 1:
cv2.polylines(img, [points_array],
True if len(points) == 4 else False,
(0, 255, 0), 2)
# Draw points with numbers
for i, point in enumerate(points):
cv2.circle(img, tuple(point), 5, (0, 0, 255), -1)
cv2.putText(img, str(i+1),
(point[0]+10, point[1]+10),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# Fill polygon with semi-transparent color if we have at least 3 points
if len(points) >= 3:
overlay = img.copy()
cv2.fillPoly(overlay, [points_array], (0, 255, 0))
cv2.addWeighted(overlay, 0.3, img, 0.7, 0, img)
return img
def update_preview(video):
if video is None:
return None, [], gr.update(visible=False)
cap = cv2.VideoCapture(video)
ret, frame = cap.read()
cap.release()
if ret:
# Reset state
state.protection_points = []
state.detected_segments = []
state.segment_image = None
state.selected_segments = []
state.previous_detections = None
state.cached_protection_area = None
# Store original frame and its dimensions
state.current_image = frame.copy() # Store the original frame
state.original_dims = (frame.shape[1], frame.shape[0]) # (width, height)
state.display_dims = state.original_dims # Set display dims same as original
# Convert to RGB without resizing
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb, gr.update(choices=[], value=[], visible=False)
return None, gr.update(choices=[], value=[], visible=False)
def handle_image_click(evt: gr.SelectData, img):
"""Handle mouse clicks on the image"""
if len(state.protection_points) >= 4:
# Reset points if we already have 4
state.protection_points = []
if state.current_image is None:
return img, "Error: No image loaded"
# Get click coordinates from the event - these are now in original scale
click_x, click_y = evt.index[0], evt.index[1]
# Add point directly (no scaling needed as we're working with original coordinates)
state.protection_points.append([click_x, click_y])
# Create a copy of the current image for display
display_img = state.current_image.copy()
# Draw points and lines
for i, point in enumerate(state.protection_points):
# Draw point
cv2.circle(display_img, (point[0], point[1]), 5, (0, 0, 255), -1)
cv2.putText(display_img, str(i+1),
(point[0] + 10, point[1] + 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# Draw lines between points
if len(state.protection_points) > 1:
points_array = np.array(state.protection_points, dtype=np.int32)
# Draw lines
cv2.polylines(display_img, [points_array],
True if len(state.protection_points) == 4 else False,
(0, 255, 0), 2)
# Fill polygon with semi-transparent color if we have at least 3 points
if len(state.protection_points) >= 3:
overlay = display_img.copy()
cv2.fillPoly(overlay, [points_array], (0, 255, 0))
cv2.addWeighted(overlay, 0.3, display_img, 0.7, 0, display_img)
# Convert to RGB for display
display_img_rgb = cv2.cvtColor(display_img, cv2.COLOR_BGR2RGB)
# Return the image and status
return display_img_rgb, f"Selected {len(state.protection_points)} points\nCoordinates: {state.protection_points}"
def reset_points():
"""Reset protection points"""
state.protection_points = []
if state.current_image is not None:
# Convert original image to RGB for display
display_img_rgb = cv2.cvtColor(state.current_image.copy(), cv2.COLOR_BGR2RGB)
return display_img_rgb, "Points reset"
return None, "Points reset"
def detect_rail_segments(image):
"""Detect rail segments using the API"""
try:
# Log original image dimensions
width, height = image.size
print(f"Detecting rail segments on image with dimensions: {width}x{height}")
files = {"file": image_to_bytes(image)}
response = requests.post(
f"{API_URL}/detect/rail-segment",
files=files,
timeout=60
)
if response.status_code == 200:
result = response.json()
if "segments" in result:
return result["segments"], base64_to_image(result["image_base64"])
else:
return [], None
else:
print(f"API error: {response.status_code} - Image size was {width}x{height}")
return [], None
except Exception as e:
print(f"Error in detect_rail_segments: {str(e)}")
return [], None
def extract_protection_area(first_frame):
"""Extract and cache protection area points using rail segment detection"""
try:
# Log original frame dimensions
height, width = first_frame.shape[:2]
print(f"Extracting protection area from frame with dimensions: {width}x{height}")
# Convert frame to PIL Image without resizing
first_frame_pil = Image.fromarray(cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB))
# Verify PIL image dimensions
pil_width, pil_height = first_frame_pil.size
print(f"PIL Image dimensions before API call: {pil_width}x{pil_height}")
# Detect rail segments
segments, segment_img = detect_rail_segments(first_frame_pil)
if segments and len(segments) > 0:
# Verify segment image dimensions
if segment_img is not None:
seg_height, seg_width = segment_img.shape[:2]
print(f"Received segment image dimensions: {seg_width}x{seg_height}")
# Only resize if dimensions don't match
if (seg_width, seg_height) != (width, height):
print(f"Resizing segment image from {seg_width}x{seg_height} to {width}x{height}")
segment_img = cv2.resize(segment_img, (width, height), interpolation=cv2.INTER_LANCZOS4)
# Store segments and image
state.detected_segments = segments
state.segment_image = segment_img
# Create segment choices with more detailed information
segment_choices = []
for i, segment in enumerate(segments):
# Extract mask dimensions for verification
mask_points = segment.get('mask', [])
if mask_points:
mask_x = [p[0] for p in mask_points]
mask_y = [p[1] for p in mask_points]
mask_width = max(mask_x) - min(mask_x)
mask_height = max(mask_y) - min(mask_y)
print(f"Segment {i+1} mask dimensions: {mask_width}x{mask_height}")
choice_text = f"Segment {i+1} (Confidence: {segment['confidence']:.2f})"
segment_choices.append(choice_text)
state.selected_segments = segment_choices # Select all segments by default
# Use the first segment's mask as protection area
segment = segments[0]
if 'mask' in segment and segment['mask']:
mask_points = segment['mask']
# Convert to list of [x,y] points and ensure integer values
mask_points = [[int(float(x)), int(float(y))] for x, y in mask_points]
if len(mask_points) >= 3: # Need at least 3 points for a valid polygon
state.cached_protection_area = mask_points
# Convert segment image to RGB for display without resizing
if segment_img is not None:
display_img = cv2.cvtColor(segment_img, cv2.COLOR_BGR2RGB)
return True, "Protection area extracted successfully", display_img
return False, "Invalid mask points in segment", None
return False, "No valid rail segments detected", None
except Exception as e:
print(f"Error in extract_protection_area: {str(e)}")
return False, f"Error extracting protection area: {str(e)}", None
def get_segment_index(choice_text):
"""Extract segment index from choice text"""
try:
# Extract index from "Segment X (Confidence: Y)" format
return int(choice_text.split()[1]) - 1
except:
return -1
def update_object_tracking(objects_in_area):
"""Update object tracking with new detections"""
try:
current_tracked = set() # Keep track of objects seen in this frame
current_warnings = [] # Collect warnings for this frame
# Match new detections with existing tracked objects
for obj in objects_in_area:
try:
if 'bbox' not in obj or 'class' not in obj:
continue
bbox = obj['bbox']
obj_class = obj['class']
is_in_red_zone = obj.get('in_protection_area', False)
matched = False
best_match_id = None
best_similarity = 0.0
# Try to match with existing tracked objects using similarity method
for obj_id, tracked in state.tracked_objects.items():
if tracked.class_name == obj_class:
# Check if object was seen recently (within time window)
if state.frame_count - tracked.last_seen <= state.time_window:
similarity = tracked.get_similarity_with(bbox)
# Use the best match above threshold
if similarity > state.similarity_threshold and similarity > best_similarity:
best_similarity = similarity
best_match_id = obj_id
# If good match found, update existing object
if best_match_id is not None:
tracked = state.tracked_objects[best_match_id]
tracked.add_detection(bbox)
tracked.last_seen = state.frame_count
current_tracked.add(best_match_id)
matched = True
# Check red zone status and warnings
warning_triggered = tracked.update_red_zone_status(is_in_red_zone, state.frame_count)
if warning_triggered:
warning_msg = f"β οΈ WARNING: {tracked.class_name} (ID: {tracked.id}) has been in red zone for {tracked.frames_in_red_zone} frames!"
current_warnings.append(warning_msg)
state.red_zone_warnings.append({
'frame': state.frame_count,
'object_id': tracked.id,
'class': tracked.class_name,
'frames_in_zone': tracked.frames_in_red_zone,
'message': warning_msg
})
# Check if object should be counted (only count objects that actually move through the zone)
if not tracked.counted and tracked.has_movement() and is_in_red_zone:
# Additional check: object should have been tracked for at least a few frames
if len(tracked.trajectory) >= 3:
tracked.counted = True
state.red_zone_passed_objects[obj_class] += 1
# If no match found, create new tracked object
if not matched:
new_obj = TrackedObject(state.next_obj_id, obj_class, bbox)
new_obj.last_seen = state.frame_count
new_obj.first_seen = state.frame_count
state.tracked_objects[state.next_obj_id] = new_obj
current_tracked.add(state.next_obj_id)
state.next_obj_id += 1
# Check red zone status for new object
new_obj.update_red_zone_status(is_in_red_zone, state.frame_count)
except Exception as e:
continue
# Update objects not seen in current frame
for obj_id, tracked in state.tracked_objects.items():
if obj_id not in current_tracked:
# Object not seen in current frame, update red zone status
tracked.update_red_zone_status(False, state.frame_count)
# Remove objects that haven't been seen for a while
if state.frame_count > state.time_window:
to_remove = []
for obj_id, tracked in state.tracked_objects.items():
if state.frame_count - tracked.last_seen > state.time_window * 2: # Remove after 2x time window
to_remove.append(obj_id)
for obj_id in to_remove:
del state.tracked_objects[obj_id]
# Store current warnings
if current_warnings:
print(f"Frame {state.frame_count} Warnings: {current_warnings}")
except Exception as e:
print(f"Error in update_object_tracking: {str(e)}")
def get_red_zone_summary():
"""Generate summary of objects that passed through red zone"""
summary = []
if state.red_zone_passed_objects:
summary.append("π΄ RED ZONE PASSAGE SUMMARY:")
total_objects = sum(state.red_zone_passed_objects.values())
summary.append(f"Total objects passed: {total_objects}")
for obj_class, count in sorted(state.red_zone_passed_objects.items()):
summary.append(f" β’ {obj_class}: {count}")
# Add current objects in red zone
current_in_zone = []
for obj_id, tracked in state.tracked_objects.items():
if tracked.frames_in_red_zone > 0:
current_in_zone.append(f"{tracked.class_name} (ID: {tracked.id}, {tracked.frames_in_red_zone} frames)")
if current_in_zone:
summary.append("\nπ¨ CURRENTLY IN RED ZONE:")
for obj_info in current_in_zone:
summary.append(f" β’ {obj_info}")
# Add recent warnings
recent_warnings = [w for w in state.red_zone_warnings if state.frame_count - w['frame'] <= 5]
if recent_warnings:
summary.append("\nβ οΈ RECENT WARNINGS:")
for warning in recent_warnings[-3:]: # Show last 3 warnings
summary.append(f" β’ Frame {warning['frame']}: {warning['message']}")
return "\n".join(summary) if summary else "No objects detected in red zone yet."
def process_frame(frame, confidence):
"""Process a video frame using cached protection area"""
try:
protection_area = []
if state.selected_segments and state.detected_segments:
for choice in state.selected_segments:
idx = get_segment_index(choice)
if 0 <= idx < len(state.detected_segments):
segment = state.detected_segments[idx]
if 'mask' in segment and segment['mask']:
protection_area = segment['mask']
break
elif len(state.protection_points) >= 3:
protection_area = state.protection_points
if not protection_area:
return None, "Protection area not set. Please extract protection area first."
# Ensure frame is valid
if frame is None or frame.size == 0:
return None, "Invalid frame"
success, buffer = cv2.imencode('.png', frame)
if not success:
return None, "Failed to encode frame"
files = {
"file": ("frame.png", buffer.tobytes(), "image/png")
}
protection_area_json = json.dumps(protection_area)
data = {
"protection_area": protection_area_json,
"confidence_threshold": str(confidence)
}
if state.previous_detections:
data["previous_detections"] = json.dumps(state.previous_detections)
try:
response = requests.post(
f"{API_URL}/detect/objects-and-redlight",
files=files,
data=data,
timeout=60
)
if response.status_code == 200:
result = response.json()
if not result.get("success"):
return None, f"API Error: {result.get('detail', 'Unknown error')}"
result_data = result.get("result", {})
if not result_data:
return None, "No result data received"
red_light_info = result_data.get("red_light", {})
red_light_detected = red_light_info.get("detected", False)
red_light_prob = red_light_info.get("probability", 0)
img_base64 = result_data.get("image_base64")
if not img_base64:
return None, "No image data received from API"
try:
if ',' in img_base64:
img_base64 = img_base64.split(',')[1]
img_data = base64.b64decode(img_base64)
nparr = np.frombuffer(img_data, np.uint8)
processed_img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if processed_img is None or processed_img.size == 0:
return None, "Failed to decode image from API response"
objects_in_area = [obj for obj in result_data.get("objects", [])
if obj.get("in_protection_area", False) and
'bbox' in obj and 'class' in obj]
# Update object tracking
state.frame_count += 1
update_object_tracking(objects_in_area)
# Cache detections for next frame
state.previous_detections = objects_in_area
processed_img_rgb = cv2.cvtColor(processed_img, cv2.COLOR_BGR2RGB)
status = []
status.append(f"Red Light: {'YES' if red_light_detected else 'NO'} ({red_light_prob:.2f})")
# Add enhanced red zone summary
red_zone_summary = get_red_zone_summary()
status.append(f"\n{red_zone_summary}")
if objects_in_area:
status.append("\nπ CURRENT FRAME DETECTIONS:")
for obj in objects_in_area:
status.append(f" β’ {obj['class']} (confidence: {obj['confidence']:.2f})")
# Add tracking statistics
active_objects = len([obj for obj in state.tracked_objects.values()
if state.frame_count - obj.last_seen <= 3])
status.append(f"\nπ TRACKING STATS:")
status.append(f" β’ Active tracked objects: {active_objects}")
status.append(f" β’ Frame: {state.frame_count}")
status.append(f" β’ Time window: {state.time_window} frames")
status.append(f" β’ Similarity threshold: {state.similarity_threshold:.2f}")
return processed_img_rgb, "\n".join(status)
except Exception as e:
return None, f"Error processing detection results: {str(e)}"
else:
error_detail = f"API Error: {response.status_code}"
try:
error_json = response.json()
if 'detail' in error_json:
error_detail += f" - {error_json['detail']}"
except:
error_detail += f" - {response.text}"
return None, error_detail
except requests.exceptions.Timeout:
return None, "API request timed out"
except requests.exceptions.ConnectionError:
return None, "Could not connect to API server"
except Exception as e:
return None, f"API request failed: {str(e)}"
except Exception as e:
return None, f"Error processing frame: {str(e)}"
def process_video(video, confidence=DEFAULT_CONFIDENCE, target_fps=1):
"""Stream processed frames in real-time using cached protection area"""
detection_results = []
cap = cv2.VideoCapture(video)
if not cap.isOpened():
yield None, "Error: Could not open video file"
return
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
frame_interval = max(1, int(fps / target_fps))
frame_number = 0
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame_number += 1
if frame_number % frame_interval != 0:
continue
# Process frame and get results
processed_frame, result = process_frame(frame, confidence)
if processed_frame is not None:
# Frame is already in RGB format from process_frame
current_status = f"Processing frame {frame_number}/{total_frames}\n{result}"
yield processed_frame, current_status
else:
current_status = f"Frame {frame_number}: {result}"
yield None, current_status
# Release resources
cap.release()
# Generate final summary
final_summary = generate_final_summary()
yield None, final_summary
except Exception as e:
yield None, f"Error processing video: {str(e)}"
finally:
cap.release()
def generate_final_summary():
"""Generate comprehensive final summary of video processing"""
summary_lines = []
summary_lines.append("π¬ VIDEO PROCESSING COMPLETE")
summary_lines.append("=" * 50)
# Processing statistics
summary_lines.append(f"π PROCESSING STATISTICS:")
summary_lines.append(f" β’ Total frames processed: {state.frame_count}")
summary_lines.append(f" β’ Time window used: {state.time_window} frames")
summary_lines.append(f" β’ Similarity threshold: {state.similarity_threshold:.2f}")
# Red zone passage summary
if state.red_zone_passed_objects:
summary_lines.append(f"\nπ΄ RED ZONE PASSAGE SUMMARY:")
total_passed = sum(state.red_zone_passed_objects.values())
summary_lines.append(f" β’ Total objects passed through red zone: {total_passed}")
for obj_class, count in sorted(state.red_zone_passed_objects.items()):
summary_lines.append(f" - {obj_class}: {count}")
else:
summary_lines.append(f"\nπ΄ RED ZONE PASSAGE SUMMARY:")
summary_lines.append(f" β’ No objects detected passing through red zone")
# Warning summary
if state.red_zone_warnings:
summary_lines.append(f"\nβ οΈ WARNING SUMMARY:")
summary_lines.append(f" β’ Total warnings generated: {len(state.red_zone_warnings)}")
# Group warnings by object class
warning_by_class = defaultdict(int)
for warning in state.red_zone_warnings:
warning_by_class[warning['class']] += 1
for obj_class, count in sorted(warning_by_class.items()):
summary_lines.append(f" - {obj_class}: {count} warnings")
# Show last few warnings
if len(state.red_zone_warnings) > 0:
summary_lines.append(f"\n π Recent warnings:")
for warning in state.red_zone_warnings[-5:]: # Last 5 warnings
summary_lines.append(f" - Frame {warning['frame']}: {warning['class']} (ID: {warning['object_id']}) - {warning['frames_in_zone']} frames in zone")
else:
summary_lines.append(f"\nβ οΈ WARNING SUMMARY:")
summary_lines.append(f" β’ No warnings generated (no objects stayed in red zone > 3 frames)")
# Active tracking summary
total_tracked = len(state.tracked_objects)
if total_tracked > 0:
summary_lines.append(f"\nπ OBJECT TRACKING SUMMARY:")
summary_lines.append(f" β’ Total unique objects tracked: {total_tracked}")
# Group by class
objects_by_class = defaultdict(int)
for obj in state.tracked_objects.values():
objects_by_class[obj.class_name] += 1
for obj_class, count in sorted(objects_by_class.items()):
summary_lines.append(f" - {obj_class}: {count}")
summary_lines.append("\nβ
Processing completed successfully!")
return "\n".join(summary_lines)
def extract_area_from_video(video):
if video is None:
return None, "Please upload a video", gr.update(choices=[], value=[], visible=False)
cap = cv2.VideoCapture(video)
ret, frame = cap.read()
cap.release()
if not ret:
return None, "Could not read video frame", gr.update(choices=[], value=[], visible=False)
success, message, segment_img = extract_protection_area(frame)
if success and segment_img is not None:
# Convert segment image to RGB for display
segment_img_rgb = cv2.cvtColor(segment_img, cv2.COLOR_BGR2RGB)
# Create segment choices
segment_choices = [f"Segment {i+1} (Confidence: {segment['confidence']:.2f})"
for i, segment in enumerate(state.detected_segments)]
return segment_img_rgb, message, gr.update(choices=segment_choices, value=segment_choices, visible=True)
return None, message, gr.update(choices=[], value=[], visible=False)
def update_selected_segments(selected):
if selected is None:
selected = []
state.selected_segments = selected
return gr.update()
def process_video_wrapper(video, confidence=DEFAULT_CONFIDENCE, target_fps=1, time_window=10, similarity_threshold=0.6):
"""Wrapper around process_video to handle full-size video processing"""
if video is None:
yield None, "Please upload a video"
return
# Reset tracking state and update parameters
state.reset_tracking()
state.time_window = time_window
state.similarity_threshold = similarity_threshold
protection_area = []
if state.selected_segments and state.detected_segments:
for choice in state.selected_segments:
idx = get_segment_index(choice)
if 0 <= idx < len(state.detected_segments):
segment = state.detected_segments[idx]
if 'mask' in segment and segment['mask']:
protection_area = segment['mask']
break
elif len(state.protection_points) >= 3:
protection_area = state.protection_points
if not protection_area:
yield None, "Please extract protection area first"
return
try:
yield None, f"π Starting video processing...\nβοΈ Time window: {time_window} frames\nβοΈ Similarity threshold: {similarity_threshold:.2f}"
for frame, status in process_video(video, confidence, target_fps):
yield frame, status
except Exception as e:
yield None, f"Error processing video: {str(e)}"
# Update the Gradio interface
with gr.Blocks(title="Enhanced Rail Traffic Monitor") as demo:
gr.Markdown("""
# Enhanced Rail Traffic Monitoring System
## Features:
- **Smart Object Tracking**: Uses similarity method to track objects across frames
- **Red Zone Monitoring**: Counts objects passing through the red zone
- **Warning System**: Alerts when objects stay in red zone for more than 3 frames
- **Configurable Parameters**: Adjust time window and similarity threshold
## Setup Instructions:
**Method 1 (Manual Protection Area):**
1. Click 4 points on the image to define protection area
2. Click "Reset Points" to start over
**Method 2 (Automatic Detection):**
1. Click "Extract Protection Area" to automatically detect rail segments
**Processing:**
3. Adjust detection confidence, processing frame rate, time window, and similarity threshold
4. Click "Process Video" to analyze
The system will show real-time results including:
- Objects currently in red zone
- Total count of objects that passed through
- Warnings for objects staying too long in red zone
- Tracking statistics
""")
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Input Video"
)
with gr.Row():
confidence = gr.Slider(
minimum=0.0,
maximum=1.0,
value=DEFAULT_CONFIDENCE,
label="Detection Confidence Threshold",
info="Minimum confidence for object detection"
)
fps_slider = gr.Slider(
minimum=1,
maximum=30,
value=1,
step=1,
label="Processing Frame Rate (FPS)",
info="Frames per second to process"
)
with gr.Row():
time_window_slider = gr.Slider(
minimum=5,
maximum=50,
value=10,
step=1,
label="Time Window (frames)",
info="Number of frames to consider for object similarity"
)
similarity_threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.6,
step=0.05,
label="Similarity Threshold",
info="Threshold for considering objects as the same (higher = stricter)"
)
with gr.Column():
preview_image = gr.Image(
label="Click to Select Protection Area (Original Size)",
interactive=True,
show_label=True
)
# Add segment selection dropdown
segment_dropdown = gr.Dropdown(
label="Selected Segments",
choices=[],
multiselect=True,
interactive=True,
visible=False,
value=[]
)
with gr.Row():
reset_btn = gr.Button("Reset Points")
extract_btn = gr.Button("Extract Protection Area")
process_btn = gr.Button("π Process Video")
with gr.Row():
video_output = gr.Image(
label="Live Processing Output",
streaming=True,
interactive=False,
show_label=True,
container=True,
show_download_button=True
)
text_output = gr.Textbox(
label="Detection Results & Red Zone Summary",
lines=15,
max_lines=20,
show_copy_button=True
)
# Handle video upload to populate preview
video_input.change(
fn=update_preview,
inputs=[video_input],
outputs=[preview_image, segment_dropdown]
)
extract_btn.click(
fn=extract_area_from_video,
inputs=[video_input],
outputs=[preview_image, text_output, segment_dropdown]
)
segment_dropdown.change(
fn=update_selected_segments,
inputs=[segment_dropdown],
outputs=[segment_dropdown]
)
process_btn.click(
fn=process_video_wrapper,
inputs=[video_input, confidence, fps_slider, time_window_slider, similarity_threshold_slider],
outputs=[video_output, text_output]
)
# Add click event handler
preview_image.select(
fn=handle_image_click,
inputs=[preview_image],
outputs=[preview_image, text_output]
)
# Add reset button handler
reset_btn.click(
fn=reset_points,
inputs=[],
outputs=[preview_image, text_output]
)
if __name__ == "__main__":
demo.queue().launch() |