Spaces:
Sleeping
Sleeping
File size: 22,243 Bytes
56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 440751c 56ec8b1 b0e0067 440751c 56ec8b1 b0e0067 440751c 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 440751c b0e0067 56ec8b1 b0e0067 56ec8b1 440751c 56ec8b1 b0e0067 56ec8b1 440751c 56ec8b1 b0e0067 56ec8b1 440751c 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 440751c b0e0067 440751c b0e0067 56ec8b1 b0e0067 56ec8b1 b0e0067 56ec8b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import gradio as gr
import requests
import json
import base64
from PIL import Image, ImageDraw, ImageFont
import io
def process_with_openrouter(image, prompt, api_key, model="qwen/qwen2.5-vl-32b-instruct", temperature=0.5):
"""Process image with OpenRouter API for object detection"""
if not api_key:
return "Please enter your OpenRouter API key", "error"
if image is None:
return "Please upload an image", "error"
try:
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": model,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{img_base64}"}
}
]
}
],
"temperature": temperature
}
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers=headers,
json=data,
timeout=60
)
if response.status_code == 200:
result = response.json()
content = result['choices'][0]['message']['content']
if '```json' in content:
content = content.split('```json')[1].split('```')[0].strip()
elif '```' in content:
content = content.split('```')[1].split('```')[0].strip()
return content, None
else:
return f"Error: {response.status_code} - {response.text}", "error"
except Exception as e:
return f"Error processing request: {str(e)}", "error"
def draw_bounding_boxes(image, detections):
"""Draw bounding boxes with class names only, same color per class"""
if not detections or len(detections) == 0:
return image
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 16)
except:
font = ImageFont.load_default()
# Predefined colors for different classes
class_colors = {
"Class I": "#FF0000", # Red
"Class II": "#00FF00", # Green
"Class III": "#0000FF", # Blue
"Class IV": "#FFFF00", # Yellow
"Class V": "#FF00FF", # Magenta
"Class VI": "#00FFFF", # Cyan
"Class VII": "#FFA500", # Orange
"Class VIII": "#800080", # Purple
"Class IX": "#008000", # Dark Green
"Class X": "#FF1493", # Deep Pink
}
# Fallback colors if more than 10 classes
fallback_colors = ["#8B4513", "#2F4F4F", "#DC143C", "#00CED1", "#FF4500", "#DA70D6", "#32CD32", "#FF6347"]
for i, detection in enumerate(detections):
if all(key in detection for key in ['x', 'y', 'width', 'height']):
x = detection['x'] * image.width
y = detection['y'] * image.height
width = detection['width'] * image.width
height = detection['height'] * image.height
# Get class name - this is what we'll display
class_name = detection.get('class', f'Class {i+1}')
x1, y1 = int(x), int(y)
x2, y2 = int(x + width), int(y + height)
x1 = max(0, min(x1, image.width))
y1 = max(0, min(y1, image.height))
x2 = max(0, min(x2, image.width))
y2 = max(0, min(y2, image.height))
# Get consistent color for this class
if class_name in class_colors:
color = class_colors[class_name]
else:
# Use hash of class name to get consistent color
color_index = hash(class_name) % len(fallback_colors)
color = fallback_colors[color_index]
# Draw bounding box
draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
# Calculate label size
text_bbox = draw.textbbox((0, 0), class_name, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
# Position label above the box, or below if no space above
if y1 - text_height - 6 >= 0:
label_y = y1 - text_height - 6
else:
label_y = y2 + 4
label_x = x1
# Ensure label stays within image bounds
if label_x + text_width + 4 > image.width:
label_x = image.width - text_width - 4
# Draw label background
draw.rectangle(
[label_x - 2, label_y - 2, label_x + text_width + 2, label_y + text_height + 2],
fill=color,
outline=color
)
# Draw class name
draw.text((label_x, label_y), class_name, fill="white", font=font)
return annotated_image
def create_detection_prompt(class_descriptions, confidence_threshold=0.5, detection_mode="specific"):
"""Create a detection prompt for class descriptions with condition checking"""
if isinstance(class_descriptions, str):
class_descriptions = [cls.strip() for cls in class_descriptions.split('\n') if cls.strip()]
# Build detection instructions
if detection_mode == "specific":
condition_text = "ONLY detect objects that match these class descriptions and their conditions. Ignore all other objects:"
elif detection_mode == "include":
condition_text = "Detect objects matching these class descriptions AND any other objects you can identify:"
else: # "exclude"
condition_text = "Detect all objects EXCEPT those matching these class descriptions. Avoid detecting:"
# Format each class description
class_specs = []
for i, description in enumerate(class_descriptions, 1):
# Parse class name and description if formatted as "Class Name: description"
if ':' in description:
class_name, class_desc = description.split(':', 1)
class_name = class_name.strip()
class_desc = class_desc.strip()
class_specs.append(f"Class {i} ({class_name}): {class_desc}")
else:
class_specs.append(f"Class {i}: {description}")
classes_text = "\n".join(class_specs) if class_specs else "No class descriptions provided"
prompt = f"""{condition_text}
{classes_text}
Detection Instructions:
- Analyze each object against the class descriptions above
- Check if objects meet the specified conditions for each class
- Only include detections with confidence above {confidence_threshold}
- Assign objects to the most appropriate class based on the descriptions
SCALE/RULER DETECTION FOR CRACK MEASUREMENT:
- First look for scales, rulers, measurement tools, or reference objects in the image
- If found, identify the scale markings and determine the measurement reference
- Use the scale to calculate actual crack widths in millimeters or appropriate units
- For crack classifications, measure crack width using the identified scale
- Include actual measurements in your analysis (e.g., "2.5mm crack width based on ruler scale")
- If no scale is visible, estimate crack width relative to common objects or provide qualitative assessment
Output a JSON list where each entry contains:
- "x": normalized x coordinate (0-1) of top-left corner
- "y": normalized y coordinate (0-1) of top-left corner
- "width": normalized width (0-1) of the bounding box
- "height": normalized height (0-1) of the bounding box
- "label": brief description with confidence score
- "confidence": confidence score (0-1)
- "class": the assigned class name (e.g., "Class I", "Class II", etc.)
- "description": why this object matches the class criteria
- "class_number": the class number from the list above (1, 2, 3, etc.)
- "measured_width": actual crack width measurement if scale is available (e.g., "2.5mm", "1.2cm")
- "measurement_method": how the measurement was obtained (e.g., "ruler scale", "coin reference", "estimated")
Example format:
[{{"x": 0.1, "y": 0.2, "width": 0.3, "height": 0.4, "label": "Structural crack (0.92)", "confidence": 0.92, "class": "Class I", "description": "Crack width exceeds 2mm threshold based on ruler measurement", "class_number": 1, "measured_width": "2.5mm", "measurement_method": "ruler scale"}}]"""
return prompt
def create_interface():
"""Create the Gradio interface for object detection"""
with gr.Blocks(title="Class-Based Object Detection", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Class-Based Object Detection with Descriptions")
gr.Markdown("Define classes with descriptions and conditions. Objects will be classified and annotated with class names only.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## βοΈ Configuration")
api_key = gr.Textbox(
label="OpenRouter API Key",
placeholder="Enter your OpenRouter API key...",
type="password"
)
with gr.Row():
use_preset = gr.Radio(
choices=["Preset Model", "Custom Model"],
value="Preset Model",
label="Model Selection",
info="Choose preset or enter custom OpenRouter model"
)
model_preset = gr.Dropdown(
choices=[
"qwen/qwen2.5-vl-32b-instruct",
"qwen/qwen-vl-max",
"openai/gpt-5-chat",
"openai/gpt-5-mini",
"anthropic/claude-opus-4.1",
"x-ai/grok-4",
"google/gemini-2.5-pro",
"google/gemini-1.5-pro",
"google/gemini-1.5-flash",
"anthropic/claude-3.5-sonnet",
"openai/gpt-4o",
"openai/gpt-4o-mini"
],
value="qwen/qwen2.5-vl-32b-instruct",
label="Preset Models",
info="Select from popular OpenRouter models",
visible=True
)
custom_model_input = gr.Textbox(
label="Custom Model ID",
placeholder="Enter any OpenRouter model ID (e.g., google/gemini-1.5-flash, anthropic/claude-3-haiku)",
visible=False,
info="Copy model IDs from openrouter.ai/models"
)
detection_mode = gr.Radio(
choices=[
("Detect Only These Classes", "specific"),
("Include These Classes + Others", "include"),
("Exclude These Classes", "exclude")
],
value="specific",
label="Detection Mode",
info="How to handle the specified class descriptions"
)
class_descriptions = gr.Textbox(
label="Class Descriptions",
placeholder="""Define each class with its description and conditions, e.g.:
Severe Cracks: Crack width more than 2mm (use ruler/scale if present for measurement)
Minor Cracks: Crack width 0.5-2mm (measure using visible scale)
Rust Damage: Rust spots larger than 5cm in diameter
Concrete Spalling: Concrete spalling deeper than 1cm
Paint Defects: Paint peeling areas greater than 10cmΒ²""",
value="""Severe Cracks: Crack width more than 2mm (use ruler/scale if present for measurement)
Minor Cracks: Crack width 0.5-2mm (measure using visible scale)
Rust Damage: Rust spots larger than 5cm in diameter""",
lines=8,
info="Enter class descriptions, one per line. Format: 'Class Name: Description' or just 'Description'"
)
confidence_threshold = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.5,
step=0.05,
label="Confidence Threshold",
info="Minimum confidence for detection"
)
temperature = gr.Slider(
minimum=0,
maximum=1,
value=0.3,
step=0.05,
label="Temperature",
info="Lower values for more consistent results"
)
image_input = gr.Image(
type="pil",
label="Upload Image for Detection"
)
detect_btn = gr.Button("π Detect Objects", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("## π Detection Results")
annotated_image = gr.Image(
label="Detected Objects",
type="pil"
)
detection_results = gr.Textbox(
label="Detection Details (JSON)",
lines=10,
show_copy_button=True
)
detection_summary = gr.Textbox(
label="Detection Summary",
lines=3
)
# Show/hide model input based on selection
def update_model_visibility(use_preset_val):
if use_preset_val == "Custom Model":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
use_preset.change(
update_model_visibility,
inputs=[use_preset],
outputs=[model_preset, custom_model_input]
)
def process_detection(image, class_desc, conf_threshold, api_key_val, use_preset_val, model_preset_val, custom_model_val, temp_val, mode_val):
if not api_key_val:
return None, "β Please enter your OpenRouter API key", "No API key provided"
if image is None:
return None, "β Please upload an image", "No image uploaded"
if not class_desc or not class_desc.strip():
return None, "β Please enter at least one class description", "No class descriptions provided"
# Determine which model to use
if use_preset_val == "Custom Model":
if not custom_model_val or custom_model_val.strip() == "":
return None, "β Please enter a custom model ID", "Custom model required"
final_model = custom_model_val.strip()
else:
final_model = model_preset_val
try:
prompt = create_detection_prompt(class_desc, conf_threshold, mode_val)
result, error = process_with_openrouter(image, prompt, api_key_val, final_model, temp_val)
if error:
return None, f"β Error: {result}", "Detection failed"
detections = json.loads(result)
if isinstance(detections, list) and len(detections) > 0:
annotated_img = draw_bounding_boxes(image, detections)
filtered_detections = [d for d in detections if d.get('confidence', 1.0) >= conf_threshold]
mode_descriptions = {
"specific": "Detecting only objects matching class descriptions",
"include": "Including specified classes + other objects",
"exclude": "Excluding objects matching class descriptions"
}
summary_text = f"β
{mode_descriptions.get(mode_val, 'Detection')} - Found {len(filtered_detections)} objects\nπ€ Model: {final_model}"
if filtered_detections:
# Group by class and show counts
class_counts = {}
for det in filtered_detections:
class_name = det.get('class', 'unknown')
description = det.get('description', '')
confidence = det.get('confidence', 1.0)
if class_name not in class_counts:
class_counts[class_name] = {
'count': 0,
'avg_confidence': 0,
'descriptions': []
}
class_counts[class_name]['count'] += 1
class_counts[class_name]['avg_confidence'] += confidence
if description and description not in class_counts[class_name]['descriptions']:
class_counts[class_name]['descriptions'].append(description)
summary_text += "\n\nClass Detection Results:"
for class_name, data in class_counts.items():
avg_conf = data['avg_confidence'] / data['count']
summary_text += f"\nβ’ {class_name}: {data['count']} detected (avg conf: {avg_conf:.2f})"
return annotated_img, json.dumps(filtered_detections, indent=2), summary_text
else:
return image, "No objects detected matching class descriptions", "No detections matching criteria above confidence threshold"
except json.JSONDecodeError:
return None, f"β Invalid JSON response: {result}", "JSON parsing failed"
except Exception as e:
return None, f"β Error: {str(e)}", "Processing error"
detect_btn.click(
process_detection,
inputs=[image_input, class_descriptions, confidence_threshold, api_key, use_preset, model_preset, custom_model_input, temperature, detection_mode],
outputs=[annotated_image, detection_results, detection_summary]
)
gr.Markdown("""
## π‘ Usage Tips
- **Specific Mode**: Only detect objects matching your class descriptions
- **Include Mode**: Detect your specified classes plus any other objects found
- **Exclude Mode**: Detect everything except objects matching your class descriptions
### π·οΈ Class Definition
**Format Options:**
1. `Class Name: Description` - e.g., "Severe Cracks: Crack width more than 2mm"
2. `Description only` - Will be automatically assigned as "Class I", "Class II", etc.
**Annotation Behavior:**
- Images show only class names (e.g., "Class I", "Class II")
- Same class = same color throughout the image
- Clean, simple visual identification
### π€ Model Selection
**Default Models (Recommended):**
- `qwen/qwen2.5-vl-32b-instruct` - Advanced Qwen vision model optimized for detailed analysis (Default)
- `qwen/qwen-vl-max` - Premium Qwen vision model with maximum capabilities
- `openai/gpt-5-chat` - Latest GPT-5 with advanced vision capabilities
- `openai/gpt-5-mini` - Faster, efficient GPT-5 variant
- `anthropic/claude-opus-4.1` - Next-gen Claude with superior reasoning
- `x-ai/grok-4` - Advanced Grok model with detailed analysis
**Custom Models**: Enter any OpenRouter model ID from [openrouter.ai/models](https://openrouter.ai/models)
### Example Class Descriptions:
```
Severe Cracks: Crack width more than 2mm (use ruler/scale for measurement)
Minor Cracks: Crack width 0.5-2mm (measure using visible scale)
Rust Damage: Rust spots larger than 5cm in diameter
Concrete Spalling: Concrete spalling deeper than 1cm
Paint Defects: Paint peeling areas greater than 10cmΒ²
Water Damage: Water damage stains larger than 15cm
```
### π Scale-Based Measurement:
- **Automatic Scale Detection**: The system looks for rulers, measuring tools, or reference objects
- **Precise Measurements**: When scales are found, actual crack widths are calculated
- **Measurement Methods**: Supports rulers, crack gauges, coins, or other reference objects
- **Enhanced Classification**: More accurate class assignment based on measured dimensions
- Enter one class description per line
- Be specific about conditions and measurements
- Objects will be classified and labeled with class names only
- Adjust confidence threshold to filter weak detections
- Get your API key from [openrouter.ai](https://openrouter.ai/)
""")
return demo
if __name__ == "__main__":
print("π Starting Object Detection App...")
demo = create_interface()
demo.launch(share=False, inbrowser=True) |