Spaces:
Sleeping
Sleeping
File size: 19,033 Bytes
87a7058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
import os
# Disable OpenMP
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['OPENBLAS_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
os.environ['NUMEXPR_NUM_THREADS'] = '1'
import streamlit as st
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import shap
from sklearn.preprocessing import MinMaxScaler
import plotly.graph_objects as go
import io
from matplotlib.figure import Figure
import math
import torch.nn.functional as F
# Set page config
st.set_page_config(
page_title="Waste Properties Predictor",
page_icon="π",
layout="wide"
)
# Custom CSS to improve the app's appearance
st.markdown("""
<style>
.stApp {
max-width: 1200px;
margin: 0 auto;
}
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Load the trained model and recreate the architecture for both friction and cohesion
class DualStreamNet(torch.nn.Module):
def __init__(self, input_size):
super(DualStreamNet, self).__init__()
# Stream 1: Original MLP
self.mlp_fc1 = torch.nn.Linear(input_size, 64)
self.mlp_fc2 = torch.nn.Linear(64, 1000)
self.mlp_fc3 = torch.nn.Linear(1000, 200)
self.mlp_fc4 = torch.nn.Linear(200, 8)
# Stream 2: Feature Attention Mechanism
self.feature_attention_dim = 16
self.feature_projection = torch.nn.Linear(input_size, self.feature_attention_dim)
self.feature_query = torch.nn.Linear(self.feature_attention_dim, self.feature_attention_dim)
self.feature_key = torch.nn.Linear(self.feature_attention_dim, self.feature_attention_dim)
self.feature_value = torch.nn.Linear(self.feature_attention_dim, self.feature_attention_dim)
self.feature_norm = torch.nn.LayerNorm(self.feature_attention_dim)
# Stream 3: Batch Attention Mechanism
self.batch_attention_dim = 16
self.batch_projection = torch.nn.Linear(input_size, self.batch_attention_dim)
self.batch_query = torch.nn.Linear(self.batch_attention_dim, self.batch_attention_dim)
self.batch_key = torch.nn.Linear(self.batch_attention_dim, self.batch_attention_dim)
self.batch_value = torch.nn.Linear(self.batch_attention_dim, self.batch_attention_dim)
self.batch_norm = torch.nn.LayerNorm(self.batch_attention_dim)
# Feature Attention stream MLP
self.feature_att_fc1 = torch.nn.Linear(self.feature_attention_dim, 32)
self.feature_att_fc2 = torch.nn.Linear(32, 8)
# Batch Attention stream MLP
self.batch_att_fc1 = torch.nn.Linear(self.batch_attention_dim, 32)
self.batch_att_fc2 = torch.nn.Linear(32, 8)
# Concatenated output
self.final_fc = torch.nn.Linear(24, 1) # 8 from MLP + 8 from feature attention + 8 from batch attention
self.dropout = torch.nn.Dropout(0.2)
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, torch.nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
def feature_attention(self, x):
# Project input to attention dimension
projected = self.feature_projection(x)
# Self-attention mechanism across features
query = self.feature_query(projected)
key = self.feature_key(projected)
value = self.feature_value(projected)
# Calculate attention scores
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.feature_attention_dim)
attention_weights = F.softmax(scores, dim=-1)
# Apply attention weights
context = torch.matmul(attention_weights, value)
# Add residual connection and normalize
context = context + projected
context = self.feature_norm(context)
return context
def batch_attention(self, x):
batch_size = x.size(0)
# If batch size is 1, we can't do batch attention
if batch_size <= 1:
return self.feature_projection(x)
# Project input to attention dimension
projected = self.batch_projection(x)
# Self-attention mechanism across batch dimension
query = self.batch_query(projected)
key = self.batch_key(projected)
value = self.batch_value(projected)
# Calculate attention scores across batch dimension
# Reshape tensors for batch-wise attention
query_reshaped = query.view(batch_size, -1) # (batch_size, feature_dim)
key_reshaped = key.view(batch_size, -1) # (batch_size, feature_dim)
# Compute similarity between samples in the batch
scores = torch.mm(query_reshaped, key_reshaped.t()) / math.sqrt(key_reshaped.size(1))
attention_weights = F.softmax(scores, dim=1) # (batch_size, batch_size)
# Weighted sum of values across batch dimension
batch_context = torch.mm(attention_weights, value.view(batch_size, -1))
batch_context = batch_context.view(batch_size, -1) # Reshape back
# Add residual connection and normalize
context = batch_context.view_as(projected) + projected
context = self.batch_norm(context)
return context
def forward(self, x):
# Stream 1: Original MLP
mlp_x = F.relu(self.mlp_fc1(x))
mlp_x = self.dropout(mlp_x)
mlp_x = F.relu(self.mlp_fc2(mlp_x))
mlp_x = self.dropout(mlp_x)
mlp_x = F.relu(self.mlp_fc3(mlp_x))
mlp_x = self.dropout(mlp_x)
mlp_x = F.relu(self.mlp_fc4(mlp_x))
mlp_x = self.dropout(mlp_x)
# Stream 2: Feature Attention mechanism
feature_att_x = self.feature_attention(x)
feature_att_x = F.relu(self.feature_att_fc1(feature_att_x))
feature_att_x = self.dropout(feature_att_x)
feature_att_x = F.relu(self.feature_att_fc2(feature_att_x))
feature_att_x = self.dropout(feature_att_x)
# Stream 3: Batch Attention mechanism
batch_att_x = self.batch_attention(x)
batch_att_x = F.relu(self.batch_att_fc1(batch_att_x))
batch_att_x = self.dropout(batch_att_x)
batch_att_x = F.relu(self.batch_att_fc2(batch_att_x))
batch_att_x = self.dropout(batch_att_x)
# Concatenate outputs from all three streams
combined = torch.cat([mlp_x, feature_att_x, batch_att_x], dim=1)
# Final prediction
output = self.final_fc(combined)
return output
@st.cache_resource
def load_model_and_data():
# Set device and random seeds
np.random.seed(32)
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load data
data = pd.read_excel("Data_syw_r.xlsx") # Updated to use Data_syw_r.xlsx
X = data.iloc[:, list(range(1, 17)) + list(range(21, 23))]
# Friction data
y_friction = data.iloc[:, 28].values
correlation_with_friction = abs(X.corrwith(pd.Series(y_friction)))
selected_features_friction = correlation_with_friction[correlation_with_friction > 0.1].index
X_friction = X[selected_features_friction]
# Cohesion data
y_cohesion = data.iloc[:, 25].values
correlation_with_cohesion = abs(X.corrwith(pd.Series(y_cohesion)))
selected_features_cohesion = correlation_with_cohesion[correlation_with_cohesion > 0.1].index
X_cohesion = X[selected_features_cohesion]
# Initialize and fit scalers for friction
scaler_X_friction = MinMaxScaler()
scaler_y_friction = MinMaxScaler()
scaler_X_friction.fit(X_friction)
scaler_y_friction.fit(y_friction.reshape(-1, 1))
# Initialize and fit scalers for cohesion
scaler_X_cohesion = MinMaxScaler()
scaler_y_cohesion = MinMaxScaler()
scaler_X_cohesion.fit(X_cohesion)
scaler_y_cohesion.fit(y_cohesion.reshape(-1, 1))
# Load models
friction_model = DualStreamNet(input_size=len(selected_features_friction)).to(device)
friction_model.load_state_dict(torch.load('best_friction_model.pt'))
friction_model.eval()
cohesion_model = DualStreamNet(input_size=len(selected_features_cohesion)).to(device)
cohesion_model.load_state_dict(torch.load('cohebest.pt'))
cohesion_model.eval()
return (friction_model, X_friction.columns, scaler_X_friction, scaler_y_friction,
cohesion_model, X_cohesion.columns, scaler_X_cohesion, scaler_y_cohesion,
device, X_friction, X_cohesion)
def predict_friction(input_values, model, scaler_X, scaler_y, device):
# Scale input values
input_scaled = scaler_X.transform(input_values)
input_tensor = torch.FloatTensor(input_scaled).to(device)
# Make prediction
with torch.no_grad():
prediction_scaled = model(input_tensor)
prediction = scaler_y.inverse_transform(prediction_scaled.cpu().numpy().reshape(-1, 1))
return prediction[0][0]
def predict_cohesion(input_values, model, scaler_X, scaler_y, device):
# Scale input values
input_scaled = scaler_X.transform(input_values)
input_tensor = torch.FloatTensor(input_scaled).to(device)
# Make prediction
with torch.no_grad():
prediction_scaled = model(input_tensor)
prediction = scaler_y.inverse_transform(prediction_scaled.cpu().numpy().reshape(-1, 1))
return prediction[0][0]
def calculate_shap_values(input_values, model, X, scaler_X, scaler_y, device):
def model_predict(X):
X_scaled = scaler_X.transform(X)
X_tensor = torch.FloatTensor(X_scaled).to(device)
model.eval()
with torch.no_grad():
scaled_predictions = model(X_tensor).cpu().numpy().flatten()
# Unscale the predictions
return scaler_y.inverse_transform(scaled_predictions.reshape(-1, 1)).flatten()
try:
# Set random seed for reproducibility
np.random.seed(42)
# Use k-means for background data
background = shap.kmeans(X.values, 10)
explainer = shap.KernelExplainer(model_predict, background)
# Calculate SHAP values with more samples for stability
shap_values = explainer.shap_values(input_values.values, nsamples=200)
if isinstance(shap_values, list):
shap_values = np.array(shap_values[0])
# Unscale the expected value
expected_value = explainer.expected_value
if isinstance(expected_value, np.ndarray):
expected_value = expected_value[0]
return shap_values[0], expected_value
except Exception as e:
st.error(f"Error calculating SHAP values: {str(e)}")
return np.zeros(len(input_values.columns)), 0.0
@st.cache_resource
def create_background_data(X, n_samples=50):
"""Create and cache background data for SHAP calculations"""
np.random.seed(42)
# Ensure n_samples is not larger than dataset
n_samples = min(n_samples, len(X))
background_indices = np.random.choice(len(X), size=n_samples, replace=False)
return X.iloc[background_indices].values
def create_waterfall_plot(shap_values, feature_names, base_value, input_data, title):
# Create SHAP explanation object
explanation = shap.Explanation(
values=shap_values,
base_values=base_value,
data=input_data,
feature_names=list(feature_names)
)
# Create figure
fig = plt.figure(figsize=(12, 8))
shap.plots.waterfall(explanation, show=False)
plt.title(f'{title} - Local SHAP Value Contributions')
plt.tight_layout()
# Save plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=300)
plt.close(fig)
buf.seek(0)
return buf
def main():
st.title("π Waste Properties Predictor")
st.write("This app predicts both friction angle and cohesion based on waste composition and characteristics.")
try:
# Load models and data
(friction_model, friction_features, scaler_X_friction, scaler_y_friction,
cohesion_model, cohesion_features, scaler_X_cohesion, scaler_y_cohesion,
device, X_friction, X_cohesion) = load_model_and_data()
# Create and cache background data for SHAP calculations
friction_background = create_background_data(X_friction)
cohesion_background = create_background_data(X_cohesion)
# Combine all unique features
all_features = sorted(list(set(friction_features) | set(cohesion_features)))
st.header("Input Parameters")
# Add file upload option
uploaded_file = st.file_uploader("Upload Excel file with input values", type=['xlsx', 'xls'])
# Initialize input values from the data file
input_values = {}
# Load default values from Data_syw_r.xlsx
default_data = pd.read_excel("Data_syw_r.xlsx")
if len(default_data) > 0:
for feature in all_features:
if feature in default_data.columns:
input_values[feature] = float(default_data[feature].iloc[1])
# Override with uploaded file if provided
if uploaded_file is not None:
try:
# Read the uploaded file
df = pd.read_excel(uploaded_file)
if len(df) > 0:
# Use the first row of the uploaded file
for feature in all_features:
if feature in df.columns:
input_values[feature] = float(df[feature].iloc[1])
except Exception as e:
st.error(f"Error reading file: {str(e)}")
st.write("Enter the waste composition and characteristics below to predict both friction angle and cohesion.")
# Create two columns for input
col1, col2 = st.columns(2)
# Create input fields for each feature
for i, feature in enumerate(all_features):
with col1 if i < len(all_features)//2 else col2:
# Get min and max values considering both friction and cohesion datasets
if feature in X_friction.columns and feature in X_cohesion.columns:
min_val = min(float(X_friction[feature].min()), float(X_cohesion[feature].min()))
max_val = max(float(X_friction[feature].max()), float(X_cohesion[feature].max()))
elif feature in X_friction.columns:
min_val = float(X_friction[feature].min())
max_val = float(X_friction[feature].max())
else:
min_val = float(X_cohesion[feature].min())
max_val = float(X_cohesion[feature].max())
# Use the value from input_values if available, otherwise use 0
default_value = input_values.get(feature, 0.0)
input_values[feature] = st.number_input(
f"{feature}",
min_value=min_val,
max_value=max_val,
value=default_value,
format="%.5f",
help=f"Range: {min_val:.5f} to {max_val:.5f}"
)
# Create DataFrames for both predictions
friction_input_df = pd.DataFrame([[input_values.get(feature, 0) for feature in friction_features]],
columns=friction_features)
cohesion_input_df = pd.DataFrame([[input_values.get(feature, 0) for feature in cohesion_features]],
columns=cohesion_features)
if st.button("Predict Properties"):
with st.spinner("Calculating predictions and SHAP values..."):
# Make predictions
friction_prediction = predict_friction(friction_input_df, friction_model, scaler_X_friction, scaler_y_friction, device)
cohesion_prediction = predict_cohesion(cohesion_input_df, cohesion_model, scaler_X_cohesion, scaler_y_cohesion, device)
# Set random seed before SHAP calculations
np.random.seed(42)
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
# Calculate SHAP values using cached background data
friction_shap_values, friction_base_value = calculate_shap_values(friction_input_df, friction_model, X_friction, scaler_X_friction, scaler_y_friction, device)
cohesion_shap_values, cohesion_base_value = calculate_shap_values(cohesion_input_df, cohesion_model, X_cohesion, scaler_X_cohesion, scaler_y_cohesion, device)
# Display results
st.header("Prediction Results")
col1, col2 = st.columns(2)
with col1:
st.metric("Friction Angle", f"{friction_prediction:.5f}Β°")
with col2:
st.metric("Cohesion", f"{cohesion_prediction:.5f} kPa")
# Create and display waterfall plots
col1, col2 = st.columns(2)
with col1:
st.subheader("Friction Angle SHAP Analysis")
friction_waterfall_plot = create_waterfall_plot(
shap_values=friction_shap_values,
feature_names=friction_features,
base_value=friction_base_value,
input_data=friction_input_df.values[0],
title="Friction Angle"
)
st.image(friction_waterfall_plot)
with col2:
st.subheader("Cohesion SHAP Analysis")
cohesion_waterfall_plot = create_waterfall_plot(
shap_values=cohesion_shap_values,
feature_names=cohesion_features,
base_value=cohesion_base_value,
input_data=cohesion_input_df.values[0],
title="Cohesion"
)
st.image(cohesion_waterfall_plot)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.info("Please try refreshing the page. If the error persists, contact support.")
if __name__ == "__main__":
main()
|