File size: 1,605 Bytes
08f4de4 9929c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
title: Fricitonangle prediction of solid waste
emoji: π
colorFrom: blue
colorTo: green
sdk: streamlit
sdk_version: "1.29.0"
app_file: app.py
pinned: false
---
# Waste Properties Predictor
This Streamlit app predicts both friction angle and cohesion based on waste composition and characteristics using deep learning models.
## Features
- Predicts both friction angle and cohesion simultaneously
- Supports Excel file input for batch predictions
- Provides SHAP value explanations for predictions
- Interactive input interface with value range validation
- Supports custom data upload
## Files Description
- `app.py`: Main application file
- `requirements.txt`: Required Python packages
- `friction_model.pt`: Pre-trained model for friction angle prediction
- `cohesion_model.pt`: Pre-trained model for cohesion prediction
- `Data_syw.xlsx`: Default data file with example values
## Usage
1. The app loads with default values from the first row of `Data_syw.xlsx`
2. You can either:
- Use the default values
- Upload your own Excel file with waste composition data
- Manually adjust individual values using the input fields
3. Click "Predict Properties" to get predictions and SHAP explanations
## Input Parameters
The app accepts various waste composition and characteristic parameters. All inputs are validated against the training data ranges to ensure reliable predictions.
## Output
For each prediction, the app provides:
- Predicted friction angle (degrees)
- Predicted cohesion (kPa)
- SHAP waterfall plots explaining the contribution of each feature to the predictions |