File size: 1,605 Bytes
08f4de4
 
 
 
 
 
 
 
 
 
 
 
9929c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
title: Fricitonangle prediction of solid waste
emoji: πŸš—
colorFrom: blue
colorTo: green
sdk: streamlit
sdk_version: "1.29.0"
app_file: app.py
pinned: false
---


# Waste Properties Predictor

This Streamlit app predicts both friction angle and cohesion based on waste composition and characteristics using deep learning models.

## Features

- Predicts both friction angle and cohesion simultaneously
- Supports Excel file input for batch predictions
- Provides SHAP value explanations for predictions
- Interactive input interface with value range validation
- Supports custom data upload

## Files Description

- `app.py`: Main application file
- `requirements.txt`: Required Python packages
- `friction_model.pt`: Pre-trained model for friction angle prediction
- `cohesion_model.pt`: Pre-trained model for cohesion prediction
- `Data_syw.xlsx`: Default data file with example values

## Usage

1. The app loads with default values from the first row of `Data_syw.xlsx`
2. You can either:
   - Use the default values
   - Upload your own Excel file with waste composition data
   - Manually adjust individual values using the input fields
3. Click "Predict Properties" to get predictions and SHAP explanations

## Input Parameters

The app accepts various waste composition and characteristic parameters. All inputs are validated against the training data ranges to ensure reliable predictions.

## Output

For each prediction, the app provides:
- Predicted friction angle (degrees)
- Predicted cohesion (kPa)
- SHAP waterfall plots explaining the contribution of each feature to the predictions