File size: 3,772 Bytes
b7217f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25352e2
b7217f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gradio as gr
import torch
import torchaudio
import re
import os
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from speechbrain.pretrained import EncoderClassifier

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load models
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("Somalitts/8aad").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

speaker_model = EncoderClassifier.from_hparams(
    source="speechbrain/spkrec-xvect-voxceleb",
    run_opts={"device": device},
    savedir="./spk_model"
)

# Speaker embedding
EMB_PATH = "speaker_embedding.pt"
if os.path.exists(EMB_PATH):
    speaker_embedding = torch.load(EMB_PATH).to(device)
else:
    audio, sr = torchaudio.load("1.wav")
    audio = torchaudio.functional.resample(audio, sr, 16000).mean(dim=0).unsqueeze(0).to(device)
    with torch.no_grad():
        emb = speaker_model.encode_batch(audio)
        emb = torch.nn.functional.normalize(emb, dim=2).squeeze()
    torch.save(emb.cpu(), EMB_PATH)
    speaker_embedding = emb

# Number conversion (Somali)
number_words = {
    0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
    6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
    11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex",
    14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix",
    17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal",
    20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton",
    60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan",
    100: "boqol", 1000: "kun",
}

def number_to_words(number):
    if number < 20:
        return number_words[number]
    elif number < 100:
        tens, unit = divmod(number, 10)
        return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
    elif number < 1000:
        hundreds, remainder = divmod(number, 100)
        return (number_words[hundreds] + " boqol" if hundreds > 1 else "BOQOL") + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000:
        thousands, remainder = divmod(number, 1000)
        return (number_to_words(thousands) + " kun" if thousands > 1 else "KUN") + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000000:
        millions, remainder = divmod(number, 1000000)
        return number_to_words(millions) + " malyan" + (" " + number_to_words(remainder) if remainder else "")
    elif number < 1000000000000:
        billions, remainder = divmod(number, 1000000000)
        return number_to_words(billions) + " milyaar" + (" " + number_to_words(remainder) if remainder else "")
    else:
        return str(number)

def replace_numbers_with_words(text):
    def replace(match):
        number = int(match.group())
        return number_to_words(number)
    return re.sub(r'\b\d+\b', replace, text)

def normalize_text(text):
    text = text.lower()
    text = replace_numbers_with_words(text)
    text = re.sub(r'[^\w\s]', '', text)
    return text

# TTS function
def text_to_speech(text):
    text = normalize_text(text)
    inputs = processor(text=text, return_tensors="pt").to(device)
    with torch.no_grad():
        speech = model.generate_speech(inputs["input_ids"], speaker_embedding.unsqueeze(0), vocoder=vocoder)
    return (16000, speech.cpu().numpy())

# Gradio Interface
iface = gr.Interface(
    fn=text_to_speech,
    inputs=gr.Textbox(label="Geli qoraalka af-soomaali"),
    outputs=gr.Audio(label="Codka la abuuray", type="numpy"),
    title="Somali TTS",
    description="TTS Soomaaliyeed oo la adeegsaday cod gaar ah (11.wav)"
)

iface.launch()