File size: 4,020 Bytes
1adaa44 195e113 1adaa44 6b90efb 1adaa44 6b90efb 1adaa44 6b90efb 1adaa44 6b90efb 1adaa44 6b90efb 1adaa44 6b90efb 1adaa44 6b90efb a7a1de1 6b90efb a7a1de1 6b90efb a7a1de1 6b90efb a665ec4 6b90efb 1adaa44 a665ec4 1adaa44 6b90efb 1adaa44 6b90efb 1adaa44 6b90efb 1adaa44 a665ec4 6b90efb a665ec4 6b90efb a665ec4 6b90efb a665ec4 6b90efb a665ec4 6b90efb a665ec4 6b90efb a665ec4 6b90efb a665ec4 6b90efb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import streamlit as st
from transformers import pipeline
from PIL import Image
import requests
from io import BytesIO
hf_token = st.secrets["HF_TOKEN"]
# Title
st.title("Image Classification Web App")
st.markdown("This app uses Hugging Face's 'transformers' library to classify images using pre-trained models. The app uses three different models for image classification: swin, convnext and vit. Please select a model to classify the image you put on the left sidebar.")
# Intro
st.sidebar.markdown("**Please provide a Satellite image for classification**")
# Image input via URL
url = st.sidebar.text_input("Image URL")
if url:
try:
response = requests.get(url)
image = Image.open(BytesIO(response.content))
st.sidebar.image(image, caption='Uploaded Image', use_column_width=True)
except Exception as e:
st.sidebar.error("Invalid URL. Please enter a valid URL for an image.")
# Image input via file uploader on the sidebar (but display image on the main page)
uploaded_file = st.sidebar.file_uploader("Or upload an image", type=["jpg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
# Documentation about the 3 models
st.sidebar.markdown("## Find more information about the model architecture at the link below : ")
st.sidebar.markdown("*Vision Transformer (ViT)* https://huggingface.co/docs/transformers/main/en/model_doc/vit")
st.sidebar.markdown("*ConvNext Transformer* https://huggingface.co/docs/transformers/main/en/model_doc/convnext")
st.sidebar.markdown("*Swin Transformer* https://huggingface.co/docs/transformers/main/en/model_doc/swin")
# Image classification function
def classify_image1(image):
pipe1 = pipeline("image-classification", "SolubleFish/swin_transformer-finetuned-eurosat", token=hf_token)
return pipe1(image)
def classify_image2(image):
pipe2 = pipeline("image-classification", "SolubleFish/image_classification_convnext", token=hf_token)
return pipe2(image)
def classify_image3(image):
pipe3 = pipeline("image-classification", "SolubleFish/image_classification_vit", token=hf_token)
return pipe3(image)
# Create three columns
col1, col2, col3 = st.columns(3)
# Classification button for classify_image1
if col1.button("Classify Image by Swin"):
if url or uploaded_file:
results = classify_image1(image)
if results:
# Use markdown to present the results
for result in results:
col1.markdown(f"Class name: **{result['label']}** \n\n Confidence: **{str(format(result['score']*100, '.2f'))}**"+"%")
col1.success("Classification completed.")
else:
col1.error("No results found.")
else:
col1.error("Please provide an image for classification.")
# Classification button for classify_image2
if col2.button("Classify Image by ConvNext"):
if url or uploaded_file:
results = classify_image2(image)
if results:
# Use markdown to present the results
for result in results:
col2.markdown(f"Class name: **{result['label']}** \n\n Confidence: **{str(format(result['score']*100, '.2f'))}**"+"%")
col2.success("Classification completed.")
else:
col2.error("No results found.")
else:
col2.error("Please provide an image for classification.")
# Classification button for classify_image3
if col3.button("Classify Image by ViT"):
if url or uploaded_file:
results = classify_image3(image)
if results:
# Use markdown to present the results
for result in results:
col3.markdown(f"Class name: **{result['label']}** \n\n Confidence: **{str(format(result['score']*100, '.2f'))}**"+"%")
col3.success("Classification completed.")
else:
col3.error("No results found.")
else:
col3.error("Please provide an image for classification.") |