File size: 4,570 Bytes
20ffb87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""

Most of the code in this file is taken from https://github.com/waterljwant/SSC/blob/master/models/DDR.py

"""

import torch
import torch.nn as nn
import torch.nn.functional as F


class SimpleRB(nn.Module):
    def __init__(self, in_channel, norm_layer, bn_momentum):
        super(SimpleRB, self).__init__()
        self.path = nn.Sequential(
            nn.Conv3d(in_channel, in_channel, kernel_size=3, padding=1, bias=False),
            norm_layer(in_channel, momentum=bn_momentum),
            nn.ReLU(),
            nn.Conv3d(in_channel, in_channel, kernel_size=3, padding=1, bias=False),
            norm_layer(in_channel, momentum=bn_momentum),
        )
        self.relu = nn.ReLU()

    def forward(self, x):
        residual = x
        conv_path = self.path(x)
        out = residual + conv_path
        out = self.relu(out)
        return out


"""

3D Residual Block,3x3x3 conv ==> 3 smaller 3D conv, refered from DDRNet

"""


class Bottleneck3D(nn.Module):
    def __init__(

        self,

        inplanes,

        planes,

        norm_layer,

        stride=1,

        dilation=[1, 1, 1],

        expansion=4,

        downsample=None,

        fist_dilation=1,

        multi_grid=1,

        bn_momentum=0.0003,

    ):
        super(Bottleneck3D, self).__init__()
        # often,planes = inplanes // 4
        self.expansion = expansion
        self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = norm_layer(planes, momentum=bn_momentum)
        self.conv2 = nn.Conv3d(
            planes,
            planes,
            kernel_size=(1, 1, 3),
            stride=(1, 1, stride),
            dilation=(1, 1, dilation[0]),
            padding=(0, 0, dilation[0]),
            bias=False,
        )
        self.bn2 = norm_layer(planes, momentum=bn_momentum)
        self.conv3 = nn.Conv3d(
            planes,
            planes,
            kernel_size=(1, 3, 1),
            stride=(1, stride, 1),
            dilation=(1, dilation[1], 1),
            padding=(0, dilation[1], 0),
            bias=False,
        )
        self.bn3 = norm_layer(planes, momentum=bn_momentum)
        self.conv4 = nn.Conv3d(
            planes,
            planes,
            kernel_size=(3, 1, 1),
            stride=(stride, 1, 1),
            dilation=(dilation[2], 1, 1),
            padding=(dilation[2], 0, 0),
            bias=False,
        )
        self.bn4 = norm_layer(planes, momentum=bn_momentum)
        self.conv5 = nn.Conv3d(
            planes, planes * self.expansion, kernel_size=(1, 1, 1), bias=False
        )
        self.bn5 = norm_layer(planes * self.expansion, momentum=bn_momentum)

        self.relu = nn.ReLU(inplace=False)
        self.relu_inplace = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.dilation = dilation
        self.stride = stride

        self.downsample2 = nn.Sequential(
            nn.AvgPool3d(kernel_size=(1, stride, 1), stride=(1, stride, 1)),
            nn.Conv3d(planes, planes, kernel_size=1, stride=1, bias=False),
            norm_layer(planes, momentum=bn_momentum),
        )
        self.downsample3 = nn.Sequential(
            nn.AvgPool3d(kernel_size=(stride, 1, 1), stride=(stride, 1, 1)),
            nn.Conv3d(planes, planes, kernel_size=1, stride=1, bias=False),
            norm_layer(planes, momentum=bn_momentum),
        )
        self.downsample4 = nn.Sequential(
            nn.AvgPool3d(kernel_size=(stride, 1, 1), stride=(stride, 1, 1)),
            nn.Conv3d(planes, planes, kernel_size=1, stride=1, bias=False),
            norm_layer(planes, momentum=bn_momentum),
        )

    def forward(self, x):
        residual = x

        out1 = self.relu(self.bn1(self.conv1(x)))
        out2 = self.bn2(self.conv2(out1))
        out2_relu = self.relu(out2)

        out3 = self.bn3(self.conv3(out2_relu))
        if self.stride != 1:
            out2 = self.downsample2(out2)
        out3 = out3 + out2
        out3_relu = self.relu(out3)

        out4 = self.bn4(self.conv4(out3_relu))
        if self.stride != 1:
            out2 = self.downsample3(out2)
            out3 = self.downsample4(out3)
        out4 = out4 + out2 + out3

        out4_relu = self.relu(out4)
        out5 = self.bn5(self.conv5(out4_relu))

        if self.downsample is not None:
            residual = self.downsample(x)

        out = out5 + residual
        out_relu = self.relu(out)

        return out_relu