Spaces:
Sleeping
Sleeping
File size: 15,741 Bytes
967a5fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import os
import re
import logging
from datetime import datetime
from typing import List, Dict, Any, Optional
from fastapi import FastAPI, HTTPException, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import torch
from transformers import (
AutoTokenizer,
AutoModel,
AutoModelForMaskedLM,
pipeline
)
import numpy as np
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="SobroJuriBert API - Full Version",
description="French Legal AI API powered by JuriBERT with complete functionality",
version="2.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global model storage
models = {}
tokenizers = {}
models_loaded = False
# Pydantic models
class TextRequest(BaseModel):
text: str = Field(..., description="Text to analyze")
class MaskFillRequest(BaseModel):
text: str = Field(..., description="Text with [MASK] tokens")
top_k: int = Field(5, description="Number of predictions to return")
class NERRequest(BaseModel):
text: str = Field(..., description="Legal text for entity extraction")
class QARequest(BaseModel):
context: str = Field(..., description="Legal document context")
question: str = Field(..., description="Question about the document")
class ClassificationRequest(BaseModel):
text: str = Field(..., description="Legal document to classify")
class EmbeddingRequest(BaseModel):
texts: List[str] = Field(..., description="List of texts to embed")
async def load_models_on_demand():
"""Load models on first request"""
global models_loaded
if models_loaded:
return
logger.info("Loading JuriBERT models on demand...")
try:
# Load JuriBERT for embeddings and mask filling
models['juribert_base'] = AutoModel.from_pretrained(
'dascim/juribert-base',
cache_dir="/app/.cache/huggingface"
)
tokenizers['juribert_base'] = AutoTokenizer.from_pretrained(
'dascim/juribert-base',
cache_dir="/app/.cache/huggingface"
)
models['juribert_mlm'] = AutoModelForMaskedLM.from_pretrained(
'dascim/juribert-base',
cache_dir="/app/.cache/huggingface"
)
models_loaded = True
logger.info("JuriBERT models loaded successfully!")
except Exception as e:
logger.error(f"Error loading models: {e}")
raise HTTPException(status_code=503, detail="Models could not be loaded")
@app.get("/")
async def root():
"""Root endpoint with API information"""
return {
"name": "SobroJuriBert API - Full Version",
"version": "2.0.0",
"description": "Complete French Legal AI API",
"status": "operational",
"endpoints": {
"mask_fill": "/mask-fill - Fill masked tokens in legal text",
"embeddings": "/embeddings - Generate legal text embeddings",
"ner": "/ner - Extract legal entities (enhanced)",
"qa": "/qa - Answer questions about legal documents",
"classify": "/classify - Classify legal documents",
"health": "/health - Health check"
},
"models": {
"base": "dascim/juribert-base",
"status": "loaded" if models_loaded else "on-demand"
}
}
@app.post("/mask-fill")
async def mask_fill(request: MaskFillRequest):
"""Fill [MASK] tokens in French legal text using JuriBERT"""
await load_models_on_demand()
try:
tokenizer = tokenizers['juribert_base']
model = models['juribert_mlm']
# Create pipeline
fill_mask = pipeline(
'fill-mask',
model=model,
tokenizer=tokenizer,
device=-1 # CPU
)
# Get predictions
predictions = fill_mask(request.text, top_k=request.top_k)
return {
"input": request.text,
"predictions": [
{
"sequence": pred['sequence'],
"score": float(pred['score']),
"token": pred['token_str']
}
for pred in predictions
]
}
except Exception as e:
logger.error(f"Mask fill error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/embeddings")
async def generate_embeddings(request: EmbeddingRequest):
"""Generate embeddings for French legal texts using JuriBERT"""
await load_models_on_demand()
try:
tokenizer = tokenizers['juribert_base']
model = models['juribert_base']
embeddings = []
for text in request.texts:
# Tokenize
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=512,
padding=True
)
# Generate embeddings
with torch.no_grad():
outputs = model(**inputs)
# Use mean pooling
attention_mask = inputs['attention_mask']
token_embeddings = outputs.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
embedding = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
embeddings.append(embedding.squeeze().numpy().tolist())
return {
"embeddings": embeddings,
"dimension": len(embeddings[0]) if embeddings else 0,
"model": "juribert-base"
}
except Exception as e:
logger.error(f"Embedding error: {e}")
raise HTTPException(status_code=500, detail=str(e))
def extract_enhanced_entities(text: str) -> List[Dict[str, Any]]:
"""Enhanced entity extraction for French legal text"""
entities = []
# Extract persons (PER)
person_patterns = [
r'\b(?:M\.|Mme|Mlle|Me|Dr|Prof\.?)\s+[A-Z][a-zÀ-ÿ]+(?:\s+[A-Z][a-zÀ-ÿ]+)*',
r'\b[A-Z][a-zÀ-ÿ]+\s+[A-Z][A-Z]+\b', # Jean DUPONT
]
for pattern in person_patterns:
for match in re.finditer(pattern, text):
entities.append({
"text": match.group(),
"type": "PER",
"start": match.start(),
"end": match.end()
})
# Extract money amounts (MONEY)
money_patterns = [
r'\b\d{1,3}(?:\s?\d{3})*(?:[,\.]\d{2})?\s?(?:€|EUR|euros?)\b',
r'\b(?:€|EUR)\s?\d{1,3}(?:\s?\d{3})*(?:[,\.]\d{2})?\b',
]
for pattern in money_patterns:
for match in re.finditer(pattern, text, re.IGNORECASE):
entities.append({
"text": match.group(),
"type": "MONEY",
"start": match.start(),
"end": match.end()
})
# Extract legal references (LEGAL_REF)
legal_patterns = [
r'article\s+(?:L\.?)?\d+(?:-\d+)?(?:\s+(?:alinéa|al\.)\s+\d+)?',
r'articles?\s+\d+\s+(?:à|et)\s+\d+',
r'(?:loi|décret|ordonnance)\s+n°\s*\d{4}-\d+',
r'directive\s+\d{4}/\d+/[A-Z]+',
]
for pattern in legal_patterns:
for match in re.finditer(pattern, text, re.IGNORECASE):
entities.append({
"text": match.group(),
"type": "LEGAL_REF",
"start": match.start(),
"end": match.end()
})
# Extract dates (DATE)
date_patterns = [
r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b',
r'\b\d{1,2}\s+(?:janvier|février|mars|avril|mai|juin|juillet|août|septembre|octobre|novembre|décembre)\s+\d{4}\b',
]
for pattern in date_patterns:
for match in re.finditer(pattern, text, re.IGNORECASE):
entities.append({
"text": match.group(),
"type": "DATE",
"start": match.start(),
"end": match.end()
})
# Extract organizations (ORG)
org_patterns = [
r'\b(?:SARL|SAS|SA|EURL|SCI|SASU|SNC)\s+[A-Z][A-Za-zÀ-ÿ\s&\'-]+',
r'\b(?:Société|Entreprise|Compagnie|Association)\s+[A-Z][A-Za-zÀ-ÿ\s&\'-]+',
]
for pattern in org_patterns:
for match in re.finditer(pattern, text):
entities.append({
"text": match.group(),
"type": "ORG",
"start": match.start(),
"end": match.end()
})
# Extract courts (COURT)
court_patterns = [
r'(?:Cour|Tribunal|Conseil)\s+(?:de\s+)?[A-Za-zÀ-ÿ\s\'-]+?(?=\s|,|\.)',
]
for pattern in court_patterns:
for match in re.finditer(pattern, text, re.IGNORECASE):
entities.append({
"text": match.group().strip(),
"type": "COURT",
"start": match.start(),
"end": match.end()
})
# Remove duplicates and sort by position
seen = set()
unique_entities = []
for ent in sorted(entities, key=lambda x: x['start']):
key = (ent['text'], ent['type'], ent['start'])
if key not in seen:
seen.add(key)
unique_entities.append(ent)
return unique_entities
@app.post("/ner")
async def extract_entities(request: NERRequest):
"""Enhanced NER for French legal text"""
try:
entities = extract_enhanced_entities(request.text)
# Group by type for summary
entity_summary = {}
for ent in entities:
if ent['type'] not in entity_summary:
entity_summary[ent['type']] = []
entity_summary[ent['type']].append(ent['text'])
return {
"entities": entities,
"summary": {
ent_type: list(set(texts)) # Unique entities per type
for ent_type, texts in entity_summary.items()
},
"total": len(entities),
"text": request.text
}
except Exception as e:
logger.error(f"NER error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/qa")
async def question_answering(request: QARequest):
"""Answer questions about French legal documents"""
await load_models_on_demand()
try:
# Generate embeddings for context and question
embedding_req = EmbeddingRequest(texts=[request.context, request.question])
embeddings = await generate_embeddings(embedding_req)
context_emb = np.array(embeddings['embeddings'][0])
question_emb = np.array(embeddings['embeddings'][1])
# Calculate similarity
similarity = np.dot(context_emb, question_emb) / (np.linalg.norm(context_emb) * np.linalg.norm(question_emb))
# Extract relevant part of context based on question keywords
question_words = set(request.question.lower().split())
sentences = request.context.split('.')
relevant_sentences = []
for sent in sentences:
sent_words = set(sent.lower().split())
overlap = len(question_words & sent_words)
if overlap > 0:
relevant_sentences.append((sent.strip(), overlap))
# Sort by relevance
relevant_sentences.sort(key=lambda x: x[1], reverse=True)
if relevant_sentences:
answer = relevant_sentences[0][0]
confidence = min(0.9, similarity + 0.3)
else:
answer = "Aucune réponse trouvée dans le contexte fourni."
confidence = 0.1
return {
"question": request.question,
"answer": answer,
"confidence": float(confidence),
"context_relevance": float(similarity),
"model": "juribert-base (similarity-based QA)"
}
except Exception as e:
logger.error(f"QA error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/classify")
async def classify_document(request: ClassificationRequest):
"""Enhanced document classification"""
try:
text_lower = request.text.lower()
# Enhanced categories with more keywords
categories = {
"contract": {
"keywords": ["contrat", "accord", "convention", "parties", "obligations", "clause", "engagement"],
"weight": 1.0
},
"litigation": {
"keywords": ["tribunal", "jugement", "litige", "procès", "avocat", "défendeur", "demandeur", "arrêt", "décision"],
"weight": 1.2
},
"corporate": {
"keywords": ["société", "sarl", "sas", "entreprise", "capital", "associés", "statuts", "assemblée"],
"weight": 1.0
},
"employment": {
"keywords": ["travail", "salarié", "employeur", "licenciement", "contrat de travail", "cdi", "cdd", "rupture"],
"weight": 1.1
},
"real_estate": {
"keywords": ["immobilier", "location", "bail", "propriété", "locataire", "propriétaire", "loyer"],
"weight": 1.0
},
"intellectual_property": {
"keywords": ["brevet", "marque", "propriété intellectuelle", "invention", "droit d'auteur", "œuvre"],
"weight": 1.0
}
}
scores = {}
matched_keywords = {}
for category, info in categories.items():
score = 0
keywords_found = []
for keyword in info['keywords']:
if keyword in text_lower:
count = text_lower.count(keyword)
score += count * info['weight']
keywords_found.append(keyword)
if score > 0:
scores[category] = score
matched_keywords[category] = keywords_found
if not scores:
primary_category = "general"
confidence = 0.3
else:
total_score = sum(scores.values())
primary_category = max(scores, key=scores.get)
confidence = min(0.95, scores[primary_category] / total_score + 0.2)
return {
"primary_category": primary_category,
"categories": [
{
"category": cat,
"score": score,
"keywords_found": matched_keywords.get(cat, [])
}
for cat, score in sorted(scores.items(), key=lambda x: x[1], reverse=True)
],
"confidence": float(confidence),
"document_type": "legal_document"
}
except Exception as e:
logger.error(f"Classification error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"timestamp": datetime.utcnow().isoformat(),
"version": "2.0.0",
"models_loaded": models_loaded,
"available_models": list(models.keys())
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |