File size: 17,113 Bytes
2300b9a
 
 
1078d41
 
 
6e5d7fd
3e1ff70
1078d41
 
 
 
 
 
 
 
3e1ff70
6e5d7fd
1078d41
 
 
6e5d7fd
1078d41
6e5d7fd
 
 
 
 
 
 
1078d41
6e5d7fd
1078d41
 
6e5d7fd
 
 
 
 
 
 
 
1078d41
6e5d7fd
 
 
 
 
 
 
 
 
 
 
 
1078d41
6e5d7fd
 
1078d41
6e5d7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078d41
6e5d7fd
 
 
 
 
 
 
 
1078d41
6e5d7fd
 
 
 
 
 
 
 
1078d41
6e5d7fd
 
 
1078d41
6e5d7fd
 
 
 
 
 
 
 
1078d41
6e5d7fd
1078d41
6e5d7fd
 
1078d41
 
6e5d7fd
 
1078d41
6e5d7fd
 
 
 
 
 
 
1078d41
6e5d7fd
 
1078d41
6e5d7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078d41
6e5d7fd
 
 
 
 
1078d41
 
6e5d7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078d41
6e5d7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078d41
 
 
 
6e5d7fd
1078d41
 
 
6e5d7fd
1078d41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2300b9a
1078d41
 
6e5d7fd
 
 
 
 
c80f57a
 
 
1078d41
c80f57a
6e5d7fd
 
1078d41
6e5d7fd
 
1078d41
6e5d7fd
 
c80f57a
3e1ff70
1078d41
 
 
 
 
 
3e1ff70
6e5d7fd
1078d41
6e5d7fd
1078d41
 
 
 
 
 
3e1ff70
1078d41
 
 
 
 
 
6e5d7fd
 
 
 
 
 
 
 
 
1078d41
 
6e5d7fd
 
 
1078d41
 
765f19b
 
 
2300b9a
765f19b
2300b9a
 
 
 
c80f57a
765f19b
6e5d7fd
1078d41
6e5d7fd
 
 
 
 
1078d41
6e5d7fd
 
 
 
765f19b
 
 
c80f57a
6e5d7fd
 
 
c80f57a
 
 
 
 
 
 
 
 
6e5d7fd
1078d41
 
c80f57a
 
6e5d7fd
765f19b
 
c80f57a
 
 
6e5d7fd
c80f57a
765f19b
 
1078d41
c80f57a
765f19b
 
c80f57a
6e5d7fd
c80f57a
1078d41
6e5d7fd
1078d41
 
 
 
6e5d7fd
1078d41
 
 
 
 
 
 
 
 
 
6e5d7fd
1078d41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e5d7fd
1078d41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765f19b
1078d41
3e1ff70
 
 
 
c80f57a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import gradio as gr
import json
import time
import os
from typing import List, Dict, Any, Optional
import random
import requests

# API key validation
def validate_api_key(api_key: str) -> bool:
    """Validate the API key against the stored secret"""
    expected_key = os.environ.get("SOACTI_API_KEY")
    if not expected_key:
        print("WARNING: SOACTI_API_KEY not set in environment variables")
        return False
    return api_key == expected_key

# Improved AI Quiz generation
class AIQuizGenerator:
    def __init__(self):
        self.api_key = os.environ.get("HUGGINGFACE_API_KEY")
        self.api_url = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large"
        
        # Backup models to try
        self.models = [
            "microsoft/DialoGPT-large",
            "google/flan-t5-large", 
            "facebook/blenderbot-400M-distill",
            "microsoft/DialoGPT-medium"
        ]
        
        print(f"AI Generator initialized. API key available: {bool(self.api_key)}")
        
    def generate_quiz(self, tema: str, antall: int = 3, språk: str = "no") -> List[Dict[str, Any]]:
        """Generate quiz questions using Hugging Face Inference API"""
        
        if not self.api_key:
            print("❌ No Hugging Face API key - using enhanced fallback")
            return self._generate_enhanced_fallback(tema, antall)
        
        # Try multiple models until one works
        for model in self.models:
            try:
                print(f"🤖 Trying model: {model}")
                questions = self._try_model(model, tema, antall, språk)
                if questions and len(questions) > 0:
                    print(f"✅ Success with model: {model}")
                    return questions
                    
            except Exception as e:
                print(f"❌ Model {model} failed: {str(e)}")
                continue
        
        print("❌ All AI models failed - using enhanced fallback")
        return self._generate_enhanced_fallback(tema, antall)
    
    def _try_model(self, model: str, tema: str, antall: int, språk: str) -> List[Dict[str, Any]]:
        """Try a specific model"""
        
        # Create a very specific prompt
        prompt = self._create_specific_prompt(tema, antall, språk)
        
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }
        
        payload = {
            "inputs": prompt,
            "parameters": {
                "max_new_tokens": 800,
                "temperature": 0.7,
                "do_sample": True,
                "top_p": 0.9
            }
        }
        
        api_url = f"https://api-inference.huggingface.co/models/{model}"
        
        start_time = time.time()
        response = requests.post(api_url, headers=headers, json=payload, timeout=30)
        generation_time = time.time() - start_time
        
        print(f"API Response Status: {response.status_code}")
        
        if response.status_code != 200:
            raise Exception(f"API returned {response.status_code}: {response.text}")
        
        result = response.json()
        
        if isinstance(result, list) and len(result) > 0:
            generated_text = result[0].get("generated_text", "")
        else:
            generated_text = str(result)
        
        print(f"Generated text preview: {generated_text[:200]}...")
        
        # Parse the response
        questions = self._parse_ai_response(generated_text, tema, antall)
        
        # Add metadata
        for q in questions:
            q["_metadata"] = {
                "model": model,
                "generation_time": generation_time,
                "ai_generated": True
            }
        
        return questions
    
    def _create_specific_prompt(self, tema: str, antall: int, språk: str) -> str:
        """Create a very specific prompt for better results"""
        
        if språk == "no":
            return f"""Lag {antall} quiz-spørsmål om {tema} på norsk.

Format: 
SPØRSMÅL: [konkret spørsmål om {tema}]
A) [første alternativ]
B) [andre alternativ] 
C) [tredje alternativ]
D) [fjerde alternativ]
SVAR: [A, B, C eller D]
FORKLARING: [kort forklaring]

Eksempel om fotball:
SPØRSMÅL: Hvem vant Ballon d'Or i 2023?
A) Lionel Messi
B) Erling Haaland
C) Kylian Mbappé
D) Karim Benzema
SVAR: A
FORKLARING: Lionel Messi vant sin åttende Ballon d'Or i 2023.

Nå lag {antall} spørsmål om {tema}:"""
        else:
            return f"""Create {antall} quiz questions about {tema} in English.

Format:
QUESTION: [specific question about {tema}]
A) [first option]
B) [second option]
C) [third option] 
D) [fourth option]
ANSWER: [A, B, C or D]
EXPLANATION: [brief explanation]

Now create {antall} questions about {tema}:"""
    
    def _parse_ai_response(self, text: str, tema: str, expected_count: int) -> List[Dict[str, Any]]:
        """Parse AI response into structured questions"""
        questions = []
        
        # Split into sections
        sections = text.split("SPØRSMÅL:") if "SPØRSMÅL:" in text else text.split("QUESTION:")
        
        for section in sections[1:]:  # Skip first empty section
            try:
                question = self._parse_single_question(section, tema)
                if question:
                    questions.append(question)
            except Exception as e:
                print(f"Error parsing question section: {e}")
                continue
        
        return questions[:expected_count]
    
    def _parse_single_question(self, section: str, tema: str) -> Optional[Dict[str, Any]]:
        """Parse a single question from text"""
        lines = [line.strip() for line in section.split('\n') if line.strip()]
        
        if not lines:
            return None
        
        question_text = lines[0].strip()
        options = []
        correct_answer = 0
        explanation = ""
        
        for line in lines[1:]:
            if line.startswith(('A)', 'B)', 'C)', 'D)')):
                options.append(line[2:].strip())
            elif line.startswith(('SVAR:', 'ANSWER:')):
                answer_part = line.split(':', 1)[1].strip()
                if answer_part in ['A', 'B', 'C', 'D']:
                    correct_answer = ['A', 'B', 'C', 'D'].index(answer_part)
            elif line.startswith(('FORKLARING:', 'EXPLANATION:')):
                explanation = line.split(':', 1)[1].strip()
        
        if len(options) >= 3 and question_text:
            # Ensure we have 4 options
            while len(options) < 4:
                options.append(f"Alternativ {len(options) + 1}")
            
            return {
                "spørsmål": question_text,
                "alternativer": options[:4],
                "korrekt_svar": correct_answer,
                "forklaring": explanation or f"Spørsmål om {tema}"
            }
        
        return None
    
    def _generate_enhanced_fallback(self, tema: str, antall: int) -> List[Dict[str, Any]]:
        """Generate better fallback questions based on topic analysis"""
        
        # Analyze topic to create better questions
        tema_lower = tema.lower()
        questions = []
        
        # Football/Soccer specific
        if any(word in tema_lower for word in ['fotball', 'football', 'soccer', 'messi', 'ronaldo', 'haaland']):
            questions = [
                {
                    "spørsmål": "Hvem regnes som en av verdens beste fotballspillere gjennom tidene?",
                    "alternativer": ["Lionel Messi", "Michael Jordan", "Tiger Woods", "Usain Bolt"],
                    "korrekt_svar": 0,
                    "forklaring": "Lionel Messi regnes som en av de beste fotballspillerne noensinne med 8 Ballon d'Or-priser."
                },
                {
                    "spørsmål": "Hvilket land har vunnet flest VM i fotball?",
                    "alternativer": ["Tyskland", "Argentina", "Brasil", "Frankrike"],
                    "korrekt_svar": 2,
                    "forklaring": "Brasil har vunnet VM i fotball 5 ganger (1958, 1962, 1970, 1994, 2002)."
                },
                {
                    "spørsmål": "Hva kalles den prestisjetunge individuelle prisen i fotball?",
                    "alternativer": ["Golden Boot", "Ballon d'Or", "FIFA Award", "Champions Trophy"],
                    "korrekt_svar": 1,
                    "forklaring": "Ballon d'Or er den mest prestisjetunge individuelle prisen i fotball."
                }
            ]
        
        # Technology specific
        elif any(word in tema_lower for word in ['teknologi', 'technology', 'ai', 'computer', 'programming']):
            questions = [
                {
                    "spørsmål": f"Hva er en viktig utvikling innen {tema}?",
                    "alternativer": ["Kunstig intelligens", "Dampmaskin", "Hjulet", "Ild"],
                    "korrekt_svar": 0,
                    "forklaring": f"Kunstig intelligens er en av de viktigste utviklingene innen moderne {tema}."
                }
            ]
        
        # Generic but better questions
        if not questions:
            questions = [
                {
                    "spørsmål": f"Hva er karakteristisk for {tema}?",
                    "alternativer": [f"Viktig egenskap ved {tema}", "Irrelevant faktor", "Tilfeldig element", "Ukjent aspekt"],
                    "korrekt_svar": 0,
                    "forklaring": f"Dette spørsmålet handler om de karakteristiske egenskapene ved {tema}."
                },
                {
                    "spørsmål": f"Hvor er {tema} mest relevant?",
                    "alternativer": ["I relevant kontekst", "I irrelevant sammenheng", "Ingen steder", "Overalt"],
                    "korrekt_svar": 0,
                    "forklaring": f"{tema} er mest relevant i sin naturlige kontekst."
                }
            ]
        
        # Add metadata to show these are fallbacks
        for q in questions:
            q["_metadata"] = {
                "model": "enhanced_fallback",
                "generation_time": 0.1,
                "ai_generated": False
            }
        
        return questions[:antall]

# Initialize the AI generator
quiz_generator = AIQuizGenerator()

# API endpoint for quiz generation
def generate_quiz_api(tema: str, språk: str = "no", antall_spørsmål: int = 3, 
                     type: str = "sted", vanskelighetsgrad: int = 3, 
                     api_key: str = None) -> Dict[str, Any]:
    """API endpoint for quiz generation"""
    
    if not validate_api_key(api_key):
        return {
            "success": False,
            "message": "Ugyldig API-nøkkel",
            "questions": []
        }
    
    if not tema or len(tema.strip()) < 2:
        return {
            "success": False,
            "message": "Vennligst oppgi et tema (minimum 2 tegn)",
            "questions": []
        }
    
    try:
        start_time = time.time()
        questions = quiz_generator.generate_quiz(tema.strip(), antall_spørsmål, språk)
        total_time = time.time() - start_time
        
        # Check if we got real AI questions or fallbacks
        ai_generated = any(q.get("_metadata", {}).get("ai_generated", False) for q in questions)
        model_used = questions[0].get("_metadata", {}).get("model", "unknown") if questions else "none"
        
        return {
            "success": True,
            "questions": questions,
            "metadata": {
                "generation_time": round(total_time, 2),
                "model_used": model_used,
                "topic": tema,
                "ai_generated": ai_generated,
                "fallback_used": not ai_generated
            },
            "message": f"Genererte {len(questions)} spørsmål om '{tema}'" + 
                      (" med AI" if ai_generated else " med forbedret fallback")
        }
    except Exception as e:
        print(f"Error in generate_quiz_api: {str(e)}")
        return {
            "success": False,
            "message": f"Feil ved generering av quiz: {str(e)}",
            "questions": []
        }

# Gradio interface
def generate_quiz_gradio(tema, antall, api_key=None):
    """Gradio wrapper"""
    if api_key and not validate_api_key(api_key):
        return "❌ **Ugyldig API-nøkkel**"
        
    if not tema or len(tema.strip()) < 2:
        return "❌ **Vennligst skriv inn et tema**"
        
    try:
        result = generate_quiz_api(tema, "no", antall, "sted", 3, api_key)
        
        if not result["success"]:
            return f"❌ **Feil:** {result['message']}"
            
        questions = result["questions"]
        metadata = result["metadata"]
        
        # Show different info based on whether AI was used
        if metadata.get("ai_generated", False):
            status_icon = "🤖"
            status_text = "AI-generert"
        else:
            status_icon = "🔄"
            status_text = "Forbedret fallback"
        
        output = f"✅ **Genererte {len(questions)} spørsmål om '{tema}'**\n\n"
        output += f"{status_icon} **Type:** {status_text}\n"
        output += f"⚙️ **Modell:** {metadata['model_used']}\n"
        output += f"⏱️ **Tid:** {metadata['generation_time']}s\n\n"
        
        for i, q in enumerate(questions, 1):
            output += f"📝 **Spørsmål {i}:** {q['spørsmål']}\n"
            for j, alt in enumerate(q['alternativer']):
                marker = "✅" if j == q['korrekt_svar'] else "❌"
                output += f"   {chr(65+j)}) {alt} {marker}\n"
            output += f"💡 **Forklaring:** {q['forklaring']}\n\n"
        
        return output
        
    except Exception as e:
        return f"❌ **Feil:** {str(e)}"

# Health check
def health_check():
    return {
        "status": "healthy", 
        "timestamp": time.time(),
        "ai_available": bool(os.environ.get("HUGGINGFACE_API_KEY"))
    }

# Gradio interface
with gr.Blocks(title="SoActi AI Quiz API - Forbedret") as demo:
    gr.Markdown("# 🧠 SoActi AI Quiz API - Forbedret")
    gr.Markdown("**🚀 Ekte AI-generering med forbedret fallback**")
    
    with gr.Row():
        with gr.Column():
            tema_input = gr.Textbox(
                label="Tema",
                value="verdens beste fotballspillere",
                placeholder="Fotball, teknologi, historie, mat, filmer..."
            )
            antall_input = gr.Slider(
                minimum=1,
                maximum=5,
                step=1,
                label="Antall spørsmål",
                value=3
            )
            api_key_input = gr.Textbox(
                label="API-nøkkel",
                placeholder="Skriv inn API-nøkkel...",
                type="password"
            )
            
            generate_btn = gr.Button("🚀 Generer Forbedret Quiz!", variant="primary")
        
        with gr.Column():
            output = gr.Textbox(
                label="Generert Quiz",
                lines=20,
                placeholder="Skriv inn et tema og test den forbedrede AI-genereringen!"
            )
    
    generate_btn.click(
        fn=generate_quiz_gradio,
        inputs=[tema_input, antall_input, api_key_input],
        outputs=output
    )
    
    gr.Markdown("## 🔗 API Endepunkt")
    gr.Markdown("`POST https://Soacti-soacti-ai-quiz-api.hf.space/generate-quiz`")

# FastAPI setup
from fastapi import FastAPI, HTTPException, Depends, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel

app = FastAPI(title="SoActi Quiz API - Forbedret")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

class QuizRequest(BaseModel):
    tema: str
    språk: str = "no"
    antall_spørsmål: int = 3
    type: str = "sted"
    vanskelighetsgrad: int = 3

async def get_api_key(authorization: str = Header(None)):
    if not authorization:
        raise HTTPException(status_code=401, detail="API key missing")
        
    parts = authorization.split()
    if len(parts) != 2 or parts[0].lower() != "bearer":
        raise HTTPException(status_code=401, detail="Invalid authorization header")
        
    return parts[1]

@app.post("/generate-quiz")
async def api_generate_quiz(request: QuizRequest, api_key: str = Depends(get_api_key)):
    result = generate_quiz_api(
        request.tema, 
        request.språk, 
        request.antall_spørsmål, 
        request.type, 
        request.vanskelighetsgrad,
        api_key
    )
    
    if not result["success"]:
        raise HTTPException(status_code=400, detail=result["message"])
        
    return result

@app.get("/health")
async def api_health():
    return health_check()

# Mount Gradio
app = gr.mount_gradio_app(app, demo, path="/")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)