Spaces:
Sleeping
Sleeping
File size: 17,113 Bytes
2300b9a 1078d41 6e5d7fd 3e1ff70 1078d41 3e1ff70 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 2300b9a 1078d41 6e5d7fd c80f57a 1078d41 c80f57a 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd c80f57a 3e1ff70 1078d41 3e1ff70 6e5d7fd 1078d41 6e5d7fd 1078d41 3e1ff70 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 765f19b 2300b9a 765f19b 2300b9a c80f57a 765f19b 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 765f19b c80f57a 6e5d7fd c80f57a 6e5d7fd 1078d41 c80f57a 6e5d7fd 765f19b c80f57a 6e5d7fd c80f57a 765f19b 1078d41 c80f57a 765f19b c80f57a 6e5d7fd c80f57a 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 6e5d7fd 1078d41 765f19b 1078d41 3e1ff70 c80f57a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import gradio as gr
import json
import time
import os
from typing import List, Dict, Any, Optional
import random
import requests
# API key validation
def validate_api_key(api_key: str) -> bool:
"""Validate the API key against the stored secret"""
expected_key = os.environ.get("SOACTI_API_KEY")
if not expected_key:
print("WARNING: SOACTI_API_KEY not set in environment variables")
return False
return api_key == expected_key
# Improved AI Quiz generation
class AIQuizGenerator:
def __init__(self):
self.api_key = os.environ.get("HUGGINGFACE_API_KEY")
self.api_url = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large"
# Backup models to try
self.models = [
"microsoft/DialoGPT-large",
"google/flan-t5-large",
"facebook/blenderbot-400M-distill",
"microsoft/DialoGPT-medium"
]
print(f"AI Generator initialized. API key available: {bool(self.api_key)}")
def generate_quiz(self, tema: str, antall: int = 3, språk: str = "no") -> List[Dict[str, Any]]:
"""Generate quiz questions using Hugging Face Inference API"""
if not self.api_key:
print("❌ No Hugging Face API key - using enhanced fallback")
return self._generate_enhanced_fallback(tema, antall)
# Try multiple models until one works
for model in self.models:
try:
print(f"🤖 Trying model: {model}")
questions = self._try_model(model, tema, antall, språk)
if questions and len(questions) > 0:
print(f"✅ Success with model: {model}")
return questions
except Exception as e:
print(f"❌ Model {model} failed: {str(e)}")
continue
print("❌ All AI models failed - using enhanced fallback")
return self._generate_enhanced_fallback(tema, antall)
def _try_model(self, model: str, tema: str, antall: int, språk: str) -> List[Dict[str, Any]]:
"""Try a specific model"""
# Create a very specific prompt
prompt = self._create_specific_prompt(tema, antall, språk)
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 800,
"temperature": 0.7,
"do_sample": True,
"top_p": 0.9
}
}
api_url = f"https://api-inference.huggingface.co/models/{model}"
start_time = time.time()
response = requests.post(api_url, headers=headers, json=payload, timeout=30)
generation_time = time.time() - start_time
print(f"API Response Status: {response.status_code}")
if response.status_code != 200:
raise Exception(f"API returned {response.status_code}: {response.text}")
result = response.json()
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get("generated_text", "")
else:
generated_text = str(result)
print(f"Generated text preview: {generated_text[:200]}...")
# Parse the response
questions = self._parse_ai_response(generated_text, tema, antall)
# Add metadata
for q in questions:
q["_metadata"] = {
"model": model,
"generation_time": generation_time,
"ai_generated": True
}
return questions
def _create_specific_prompt(self, tema: str, antall: int, språk: str) -> str:
"""Create a very specific prompt for better results"""
if språk == "no":
return f"""Lag {antall} quiz-spørsmål om {tema} på norsk.
Format:
SPØRSMÅL: [konkret spørsmål om {tema}]
A) [første alternativ]
B) [andre alternativ]
C) [tredje alternativ]
D) [fjerde alternativ]
SVAR: [A, B, C eller D]
FORKLARING: [kort forklaring]
Eksempel om fotball:
SPØRSMÅL: Hvem vant Ballon d'Or i 2023?
A) Lionel Messi
B) Erling Haaland
C) Kylian Mbappé
D) Karim Benzema
SVAR: A
FORKLARING: Lionel Messi vant sin åttende Ballon d'Or i 2023.
Nå lag {antall} spørsmål om {tema}:"""
else:
return f"""Create {antall} quiz questions about {tema} in English.
Format:
QUESTION: [specific question about {tema}]
A) [first option]
B) [second option]
C) [third option]
D) [fourth option]
ANSWER: [A, B, C or D]
EXPLANATION: [brief explanation]
Now create {antall} questions about {tema}:"""
def _parse_ai_response(self, text: str, tema: str, expected_count: int) -> List[Dict[str, Any]]:
"""Parse AI response into structured questions"""
questions = []
# Split into sections
sections = text.split("SPØRSMÅL:") if "SPØRSMÅL:" in text else text.split("QUESTION:")
for section in sections[1:]: # Skip first empty section
try:
question = self._parse_single_question(section, tema)
if question:
questions.append(question)
except Exception as e:
print(f"Error parsing question section: {e}")
continue
return questions[:expected_count]
def _parse_single_question(self, section: str, tema: str) -> Optional[Dict[str, Any]]:
"""Parse a single question from text"""
lines = [line.strip() for line in section.split('\n') if line.strip()]
if not lines:
return None
question_text = lines[0].strip()
options = []
correct_answer = 0
explanation = ""
for line in lines[1:]:
if line.startswith(('A)', 'B)', 'C)', 'D)')):
options.append(line[2:].strip())
elif line.startswith(('SVAR:', 'ANSWER:')):
answer_part = line.split(':', 1)[1].strip()
if answer_part in ['A', 'B', 'C', 'D']:
correct_answer = ['A', 'B', 'C', 'D'].index(answer_part)
elif line.startswith(('FORKLARING:', 'EXPLANATION:')):
explanation = line.split(':', 1)[1].strip()
if len(options) >= 3 and question_text:
# Ensure we have 4 options
while len(options) < 4:
options.append(f"Alternativ {len(options) + 1}")
return {
"spørsmål": question_text,
"alternativer": options[:4],
"korrekt_svar": correct_answer,
"forklaring": explanation or f"Spørsmål om {tema}"
}
return None
def _generate_enhanced_fallback(self, tema: str, antall: int) -> List[Dict[str, Any]]:
"""Generate better fallback questions based on topic analysis"""
# Analyze topic to create better questions
tema_lower = tema.lower()
questions = []
# Football/Soccer specific
if any(word in tema_lower for word in ['fotball', 'football', 'soccer', 'messi', 'ronaldo', 'haaland']):
questions = [
{
"spørsmål": "Hvem regnes som en av verdens beste fotballspillere gjennom tidene?",
"alternativer": ["Lionel Messi", "Michael Jordan", "Tiger Woods", "Usain Bolt"],
"korrekt_svar": 0,
"forklaring": "Lionel Messi regnes som en av de beste fotballspillerne noensinne med 8 Ballon d'Or-priser."
},
{
"spørsmål": "Hvilket land har vunnet flest VM i fotball?",
"alternativer": ["Tyskland", "Argentina", "Brasil", "Frankrike"],
"korrekt_svar": 2,
"forklaring": "Brasil har vunnet VM i fotball 5 ganger (1958, 1962, 1970, 1994, 2002)."
},
{
"spørsmål": "Hva kalles den prestisjetunge individuelle prisen i fotball?",
"alternativer": ["Golden Boot", "Ballon d'Or", "FIFA Award", "Champions Trophy"],
"korrekt_svar": 1,
"forklaring": "Ballon d'Or er den mest prestisjetunge individuelle prisen i fotball."
}
]
# Technology specific
elif any(word in tema_lower for word in ['teknologi', 'technology', 'ai', 'computer', 'programming']):
questions = [
{
"spørsmål": f"Hva er en viktig utvikling innen {tema}?",
"alternativer": ["Kunstig intelligens", "Dampmaskin", "Hjulet", "Ild"],
"korrekt_svar": 0,
"forklaring": f"Kunstig intelligens er en av de viktigste utviklingene innen moderne {tema}."
}
]
# Generic but better questions
if not questions:
questions = [
{
"spørsmål": f"Hva er karakteristisk for {tema}?",
"alternativer": [f"Viktig egenskap ved {tema}", "Irrelevant faktor", "Tilfeldig element", "Ukjent aspekt"],
"korrekt_svar": 0,
"forklaring": f"Dette spørsmålet handler om de karakteristiske egenskapene ved {tema}."
},
{
"spørsmål": f"Hvor er {tema} mest relevant?",
"alternativer": ["I relevant kontekst", "I irrelevant sammenheng", "Ingen steder", "Overalt"],
"korrekt_svar": 0,
"forklaring": f"{tema} er mest relevant i sin naturlige kontekst."
}
]
# Add metadata to show these are fallbacks
for q in questions:
q["_metadata"] = {
"model": "enhanced_fallback",
"generation_time": 0.1,
"ai_generated": False
}
return questions[:antall]
# Initialize the AI generator
quiz_generator = AIQuizGenerator()
# API endpoint for quiz generation
def generate_quiz_api(tema: str, språk: str = "no", antall_spørsmål: int = 3,
type: str = "sted", vanskelighetsgrad: int = 3,
api_key: str = None) -> Dict[str, Any]:
"""API endpoint for quiz generation"""
if not validate_api_key(api_key):
return {
"success": False,
"message": "Ugyldig API-nøkkel",
"questions": []
}
if not tema or len(tema.strip()) < 2:
return {
"success": False,
"message": "Vennligst oppgi et tema (minimum 2 tegn)",
"questions": []
}
try:
start_time = time.time()
questions = quiz_generator.generate_quiz(tema.strip(), antall_spørsmål, språk)
total_time = time.time() - start_time
# Check if we got real AI questions or fallbacks
ai_generated = any(q.get("_metadata", {}).get("ai_generated", False) for q in questions)
model_used = questions[0].get("_metadata", {}).get("model", "unknown") if questions else "none"
return {
"success": True,
"questions": questions,
"metadata": {
"generation_time": round(total_time, 2),
"model_used": model_used,
"topic": tema,
"ai_generated": ai_generated,
"fallback_used": not ai_generated
},
"message": f"Genererte {len(questions)} spørsmål om '{tema}'" +
(" med AI" if ai_generated else " med forbedret fallback")
}
except Exception as e:
print(f"Error in generate_quiz_api: {str(e)}")
return {
"success": False,
"message": f"Feil ved generering av quiz: {str(e)}",
"questions": []
}
# Gradio interface
def generate_quiz_gradio(tema, antall, api_key=None):
"""Gradio wrapper"""
if api_key and not validate_api_key(api_key):
return "❌ **Ugyldig API-nøkkel**"
if not tema or len(tema.strip()) < 2:
return "❌ **Vennligst skriv inn et tema**"
try:
result = generate_quiz_api(tema, "no", antall, "sted", 3, api_key)
if not result["success"]:
return f"❌ **Feil:** {result['message']}"
questions = result["questions"]
metadata = result["metadata"]
# Show different info based on whether AI was used
if metadata.get("ai_generated", False):
status_icon = "🤖"
status_text = "AI-generert"
else:
status_icon = "🔄"
status_text = "Forbedret fallback"
output = f"✅ **Genererte {len(questions)} spørsmål om '{tema}'**\n\n"
output += f"{status_icon} **Type:** {status_text}\n"
output += f"⚙️ **Modell:** {metadata['model_used']}\n"
output += f"⏱️ **Tid:** {metadata['generation_time']}s\n\n"
for i, q in enumerate(questions, 1):
output += f"📝 **Spørsmål {i}:** {q['spørsmål']}\n"
for j, alt in enumerate(q['alternativer']):
marker = "✅" if j == q['korrekt_svar'] else "❌"
output += f" {chr(65+j)}) {alt} {marker}\n"
output += f"💡 **Forklaring:** {q['forklaring']}\n\n"
return output
except Exception as e:
return f"❌ **Feil:** {str(e)}"
# Health check
def health_check():
return {
"status": "healthy",
"timestamp": time.time(),
"ai_available": bool(os.environ.get("HUGGINGFACE_API_KEY"))
}
# Gradio interface
with gr.Blocks(title="SoActi AI Quiz API - Forbedret") as demo:
gr.Markdown("# 🧠 SoActi AI Quiz API - Forbedret")
gr.Markdown("**🚀 Ekte AI-generering med forbedret fallback**")
with gr.Row():
with gr.Column():
tema_input = gr.Textbox(
label="Tema",
value="verdens beste fotballspillere",
placeholder="Fotball, teknologi, historie, mat, filmer..."
)
antall_input = gr.Slider(
minimum=1,
maximum=5,
step=1,
label="Antall spørsmål",
value=3
)
api_key_input = gr.Textbox(
label="API-nøkkel",
placeholder="Skriv inn API-nøkkel...",
type="password"
)
generate_btn = gr.Button("🚀 Generer Forbedret Quiz!", variant="primary")
with gr.Column():
output = gr.Textbox(
label="Generert Quiz",
lines=20,
placeholder="Skriv inn et tema og test den forbedrede AI-genereringen!"
)
generate_btn.click(
fn=generate_quiz_gradio,
inputs=[tema_input, antall_input, api_key_input],
outputs=output
)
gr.Markdown("## 🔗 API Endepunkt")
gr.Markdown("`POST https://Soacti-soacti-ai-quiz-api.hf.space/generate-quiz`")
# FastAPI setup
from fastapi import FastAPI, HTTPException, Depends, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
app = FastAPI(title="SoActi Quiz API - Forbedret")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class QuizRequest(BaseModel):
tema: str
språk: str = "no"
antall_spørsmål: int = 3
type: str = "sted"
vanskelighetsgrad: int = 3
async def get_api_key(authorization: str = Header(None)):
if not authorization:
raise HTTPException(status_code=401, detail="API key missing")
parts = authorization.split()
if len(parts) != 2 or parts[0].lower() != "bearer":
raise HTTPException(status_code=401, detail="Invalid authorization header")
return parts[1]
@app.post("/generate-quiz")
async def api_generate_quiz(request: QuizRequest, api_key: str = Depends(get_api_key)):
result = generate_quiz_api(
request.tema,
request.språk,
request.antall_spørsmål,
request.type,
request.vanskelighetsgrad,
api_key
)
if not result["success"]:
raise HTTPException(status_code=400, detail=result["message"])
return result
@app.get("/health")
async def api_health():
return health_check()
# Mount Gradio
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|