File size: 27,889 Bytes
e1bb13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### SMS SPAM DETECTION USING DNN"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "from sklearn.model_selection import train_test_split\n",
    "import tensorflow as tf\n",
    "from sklearn.metrics import classification_report, confusion_matrix, accuracy_score\n",
    "import pickle"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Downloading Dataset\n",
    "dataset = pd.read_csv(r'SMSSpamCollection.txt', sep='\\t', names=['label', 'message'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "  label                                            message\n",
      "0   ham  Go until jurong point, crazy.. Available only ...\n",
      "1   ham                      Ok lar... Joking wif u oni...\n",
      "2  spam  Free entry in 2 a wkly comp to win FA Cup fina...\n",
      "3   ham  U dun say so early hor... U c already then say...\n",
      "4   ham  Nah I don't think he goes to usf, he lives aro...\n",
      "----------------------  -------------------------\n",
      "      message                                                               \n",
      "        count unique                                                top freq\n",
      "label                                                                       \n",
      "ham      4825   4516                             Sorry, I'll call later   30\n",
      "spam      747    653  Please call our customer service representativ...    4\n"
     ]
    }
   ],
   "source": [
    "print(dataset.head())\n",
    "print(\"----------------------  -------------------------\")\n",
    "print(dataset.groupby('label').describe())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Preprocessing\n",
    "dataset['label'] = dataset['label'].map({'spam': 1, 'ham': 0})\n",
    "X = dataset['message'].values\n",
    "y = dataset['label'].values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[387, 245, 325, 450, 917, 432, 1, 1323, 169, 2377], [19, 4, 1021, 112, 93, 6, 40, 358]]\n"
     ]
    }
   ],
   "source": [
    "# Train Test Split\n",
    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)\n",
    "\n",
    "tokeniser = tf.keras.preprocessing.text.Tokenizer()\n",
    "tokeniser.fit_on_texts(X_train)\n",
    "\n",
    "# Save the tokenizer using pickle\n",
    "with open('dnn_smsspam_tokenizer.pickle', 'wb') as handle:\n",
    "    pickle.dump(tokeniser, handle, protocol=pickle.HIGHEST_PROTOCOL)\n",
    "\n",
    "encoded_train = tokeniser.texts_to_sequences(X_train)\n",
    "encoded_test = tokeniser.texts_to_sequences(X_test)\n",
    "print(encoded_train[0:2])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[  14   61  388  540 3557   23 3558    0    0    0    0    0    0    0\n",
      "     0    0    0    0    0    0]\n",
      " [ 474   59   35   10   61   22   63   75   76    0    0    0    0    0\n",
      "     0    0    0    0    0    0]\n",
      " [  36  727  180   26 3559 2396  452   41    9 1850    0    0    0    0\n",
      "     0    0    0    0    0    0]\n",
      " [ 518 2397  158   73  243   10   48   92    0    0    0    0    0    0\n",
      "     0    0    0    0    0    0]]\n"
     ]
    }
   ],
   "source": [
    "# Padding\n",
    "max_length = 20\n",
    "padded_train = tf.keras.preprocessing.sequence.pad_sequences(encoded_train, maxlen=max_length, padding='post')\n",
    "padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=max_length, padding='post')\n",
    "print(padded_train[30:34])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "vocab_size = len(tokeniser.word_index) + 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Model definition\n",
    "model=tf.keras.models.Sequential([\n",
    "   tf.keras.layers.Embedding(input_dim=vocab_size,output_dim= 64, input_length=max_length),\n",
    "   tf.keras.layers.GlobalAveragePooling1D(),\n",
    "   tf.keras.layers.Dense(64, activation='relu'),\n",
    "   tf.keras.layers.Dense(32, activation='relu'),\n",
    "   tf.keras.layers.Dense(16, activation='relu'),\n",
    "   tf.keras.layers.Dense(1, activation='sigmoid')\n",
    "])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential\"\n",
      "_________________________________________________________________\n",
      " Layer (type)                Output Shape              Param #   \n",
      "=================================================================\n",
      " embedding (Embedding)       (None, 20, 64)            480128    \n",
      "                                                                 \n",
      " global_average_pooling1d (  (None, 64)                0         \n",
      " GlobalAveragePooling1D)                                         \n",
      "                                                                 \n",
      " dense (Dense)               (None, 64)                4160      \n",
      "                                                                 \n",
      " dense_1 (Dense)             (None, 32)                2080      \n",
      "                                                                 \n",
      " dense_2 (Dense)             (None, 16)                528       \n",
      "                                                                 \n",
      " dense_3 (Dense)             (None, 1)                 17        \n",
      "                                                                 \n",
      "=================================================================\n",
      "Total params: 486913 (1.86 MB)\n",
      "Trainable params: 486913 (1.86 MB)\n",
      "Non-trainable params: 0 (0.00 Byte)\n",
      "_________________________________________________________________\n",
      "None\n"
     ]
    }
   ],
   "source": [
    "# compile the model\n",
    "model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
    "\n",
    "# summarize the model\n",
    "print(model.summary())\n",
    "\n",
    "# Early stopping callback\n",
    "early_stop = tf.keras.callbacks.EarlyStopping(monitor='accuracy', mode='min', patience=10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/50\n",
      "122/122 [==============================] - 2s 6ms/step - loss: 0.3687 - accuracy: 0.8895 - val_loss: 0.0994 - val_accuracy: 0.9767\n",
      "Epoch 2/50\n",
      "122/122 [==============================] - 1s 4ms/step - loss: 0.0500 - accuracy: 0.9864 - val_loss: 0.0381 - val_accuracy: 0.9904\n",
      "Epoch 3/50\n",
      "122/122 [==============================] - 1s 5ms/step - loss: 0.0163 - accuracy: 0.9959 - val_loss: 0.0373 - val_accuracy: 0.9910\n",
      "Epoch 4/50\n",
      "122/122 [==============================] - 1s 5ms/step - loss: 0.0069 - accuracy: 0.9985 - val_loss: 0.0399 - val_accuracy: 0.9886\n",
      "Epoch 5/50\n",
      "122/122 [==============================] - 1s 5ms/step - loss: 0.0043 - accuracy: 0.9992 - val_loss: 0.0416 - val_accuracy: 0.9910\n",
      "Epoch 6/50\n",
      "122/122 [==============================] - 1s 6ms/step - loss: 0.0026 - accuracy: 0.9995 - val_loss: 0.0439 - val_accuracy: 0.9910\n",
      "Epoch 7/50\n",
      "122/122 [==============================] - 1s 5ms/step - loss: 0.0018 - accuracy: 0.9997 - val_loss: 0.0454 - val_accuracy: 0.9910\n",
      "Epoch 8/50\n",
      "122/122 [==============================] - 1s 5ms/step - loss: 0.0011 - accuracy: 0.9997 - val_loss: 0.0476 - val_accuracy: 0.9916\n",
      "Epoch 9/50\n",
      "122/122 [==============================] - 1s 6ms/step - loss: 0.0015 - accuracy: 0.9992 - val_loss: 0.0533 - val_accuracy: 0.9904\n",
      "Epoch 10/50\n",
      "122/122 [==============================] - 1s 5ms/step - loss: 2.8591e-04 - accuracy: 1.0000 - val_loss: 0.0531 - val_accuracy: 0.9910\n",
      "Epoch 11/50\n",
      "122/122 [==============================] - 1s 5ms/step - loss: 3.3040e-04 - accuracy: 1.0000 - val_loss: 0.0553 - val_accuracy: 0.9904\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<keras.src.callbacks.History at 0x252ee469930>"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Model training\n",
    "model.fit(x=padded_train,\n",
    "         y=y_train,\n",
    "         epochs=50,\n",
    "         validation_data=(padded_test, y_test),\n",
    "         callbacks=[early_stop]\n",
    "         )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "53/53 [==============================] - 0s 886us/step\n"
     ]
    }
   ],
   "source": [
    "# Generate predictions after model training\n",
    "preds = (model.predict(padded_test) > 0.5).astype(\"int32\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Classification Report\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "           0       0.99      1.00      0.99      1448\n",
      "           1       1.00      0.93      0.96       224\n",
      "\n",
      "    accuracy                           0.99      1672\n",
      "   macro avg       0.99      0.97      0.98      1672\n",
      "weighted avg       0.99      0.99      0.99      1672\n",
      "\n",
      "Accuracy : 99.04\n"
     ]
    }
   ],
   "source": [
    "# Classification report\n",
    "print(\"Classification Report\")\n",
    "print(classification_report(y_test, preds))\n",
    "\n",
    "# Accuracy score\n",
    "acc_sc = accuracy_score(y_test, preds)\n",
    "print(f\"Accuracy : {round(acc_sc * 100, 2)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGwCAYAAABhDIVPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhKUlEQVR4nO3deXRUZb6v8W8RSGUkgoxBCGBkahlDQzODIHDtwyCnm3MU7YCCLcggEYS0h1kIDSIYmRSQAAcFLgoNqK2IMggIEoGrEmKHGQSUE4ZOgEy1zx9cqi0yWEUqqbzh+ayVtay9d3b9ShfyrF1v1bZZlmUJAADAEGV8PQAAAIAniBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUcr6eoCiEth8uK9HAFAEbhycr5vZvp4CQFEIcLNKuPICAACMQrwAAACjEC8AAMAoxAsAADAK8QIAAIxCvAAAAKMQLwAAwCjECwAAMArxAgAAjEK8AAAAoxAvAADAKMQLAAAwCvECAACMQrwAAACjEC8AAMAoxAsAADAK8QIAAIxCvAAAAKMQLwAAwCjECwAAMArxAgAAjEK8AAAAoxAvAADAKMQLAAAwCvECAACMQrwAAACjEC8AAMAoxAsAADAK8QIAAIxCvAAAAKMQLwAAwCjECwAAMArxAgAAjEK8AAAAoxAvAADAKMQLAAAwCvECAACMQrwAAACjEC8AAMAoxAsAADAK8QIAAIxCvAAAAKMQLwAAwCjECwAAMArxAgAAjEK8AAAAoxAvAADAKMQLAAAwCvECAACMQrwAAACjEC8AAMAoxAsAADAK8QIAAIxCvAAAAKMQLwAAwCjECwAAMArxAgAAjEK8AAAAoxAvAADAKMQLAAAwCvECAACMQrwAAACjEC8AAMAoxAsAADAK8QIAAIxCvAAAAKMQLwAAwCjECwAAMArxAgAAjEK8AAAAoxAvAADAKMQLAAAwCvECAACMQrwAAACjEC8AAMAoxAsAADAK8QIAAIxCvAAAAKMQLwAAwCjECwAAMArxAgAAjEK8AAAAoxAvAADAKMQLAAAwCvECAACMQrzA59q1eFDr5/1Zxz+drhsH56tX5yb5Hhv/yn/qxsH5Gv5k5zz3+5crq6/WjNeNg/PVpF4N5/ZX/vyYbhycn+vn0p453n45AAop8cDXGjHseXXr3F5Nf1Nfn2/7zNcjoYQhXuBzwYF2ffvDOb0Yt7bA43p3aaJWjWvrx5+u5HvMjBf76PzPV3Ntn7fyM9XuFuvyc+TYeX2w9WBhxwfgZTduXFf9+vUV+1+TfD0KSqiyvh4A+HT3EX26+0iBx4RXDtPr4/6oXsMWaMObQ/M8pnu7Rur6u4Z6YuxS9Wz/G5d96TcylX4j0/m4cb0aavRgdY2cvqbwLwCAV7Xv0EntO3Ty9RgowYgXlHg2m03LXv2T5q7YpqTjF/I8pkrFUC2c8IT6xyzR9V9ESn4GPd5WP5y8qN0Hj3l7XABAEfNpvFy6dEnvvPOO9u7dqwsXbv2lVK1aNbVt21YDBw5U5cqVfTkeSoiXBj2q7ByHFry3Pd9j3p76lJas/1LfHDmtWtUrFng+u39Z/cf/aak5y7d6eVIAQHHwWbx8/fXX6tGjh4KCgtStWzfVq1dPknTx4kXFx8dr5syZ+uSTT9SyZcsCz5ORkaGMjAyXbXa7vcjmRvFq3rCmXniis9o++dd8jxn2RCeFBgVo9jufunXOPo80VWhQgP578z5vjQkAKEY+i5cRI0boj3/8oxYvXiybzeayz7IsPf/88xoxYoT27t1b4Hni4uI0ZcoUl22TJrHIq7Ro1/xBVakYoh8+murcVrasn2bG9NPwAV3U4PeT1Pm39dS6SR1d3TfP5Xd3r35Zaz4+oCETV7lsH9i3rT7e9Z1+Sv1ncbwEAICX+SxeDh8+rISEhFzhIt1a4zB69Gg1b978V88TGxurmJgYl212u11//dtLXpsVvvPuh1/r833JLts2L3xB7364Xyv/9pUk6aVZ6zV5wRbn/uqVw7Rl0XA9PX65vv72pMvvRoTfr06/fUh/ePHtIp8dAFA0fBYv1apV0/79+9WgQYM89+/fv19Vq1b91fPY7XbeJjJccKC/Hqz5r/VNtWvcryb1aujytes6c+GyUq+muxyflZ2ji5eu6R+nfpIknblw2WV/2vVbbyMeP/Ozzt3xserovr/ThUvX9Mnu74vglQDwhuvp6Tp9+rTz8bmzZ3U0KUlhYWGqHh7uw8lQUvgsXsaMGaPnnntOiYmJ6tq1qzNULl68qG3btmnJkiV67bXXfDUeilGLRhH6dOko5+NZY/5dkrRq01d6btJ/e+15bDabnu71O63atE8Oh+W18wLwru+//06DB/3J+fi1WXGSpN59Hte0GTN9NRZKEJtlWT77v/jatWs1d+5cJSYmKicnR5Lk5+enqKgoxcTEqH///nd97sDmw701JoAS5MbB+bqZ7espABSFADcvqfg0Xm7LysrSpUuXJEmVKlVSuXLlCn1O4gUonYgXoPRyN15KxJfUlStXTtWrV/f1GAAAwADc2wgAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARinrzkGbNm1y+4S9e/e+62EAAAB+jVvx0rdvX7dOZrPZlJOTU5h5AAAACuRWvDgcjqKeAwAAwC2FWvNy8+ZNb80BAADgFo/jJScnR9OmTVONGjUUEhKi48ePS5ImTJigZcuWeX1AAACAX/I4XqZPn66EhATNmjVL/v7+zu0PP/ywli5d6tXhAAAA7uRxvKxcuVJvv/22BgwYID8/P+f2pk2b6ujRo14dDgAA4E4ex8u5c+cUGRmZa7vD4VBWVpZXhgIAAMiPx/HSqFEj7dq1K9f29evXq3nz5l4ZCgAAID9ufVT6lyZOnKjo6GidO3dODodDH3zwgZKTk7Vy5Upt2bKlKGYEAABw8vjKS58+fbR582Z99tlnCg4O1sSJE5WUlKTNmzfr0UcfLYoZAQAAnGyWZVm+HqIoBDYf7usRABSBGwfn62a2r6cAUBQC3Hw/yOO3jW47cOCAkpKSJN1aBxMVFXW3pwIAAHCbx/Fy9uxZPfHEE9q9e7fuu+8+SdKVK1fUtm1brVmzRg888IC3ZwQAAHDyeM3L4MGDlZWVpaSkJKWmpio1NVVJSUlyOBwaPHhwUcwIAADg5PGal8DAQO3ZsyfXx6ITExPVoUMHXb9+3asD3i3WvAClE2tegNLL3TUvHl95qVmzZp5fRpeTk6Pw8HBPTwcAAOARj+Nl9uzZGjFihA4cOODcduDAAY0aNUqvvfaaV4cDAAC4k1tvG1WoUEE2m835OD09XdnZ2Spb9tb1ndv/HBwcrNTU1KKb1gO8bQSUTrxtBJReXv2o9Lx58woxCgAAgPe4FS/R0dFFPQcAAIBb7vpL6iTp5s2byszMdNlWvnz5Qg0EAABQEI8X7Kanp2v48OGqUqWKgoODVaFCBZcfAACAouRxvLz88sv6/PPPtWjRItntdi1dulRTpkxReHi4Vq5cWRQzAgAAOHn8ttHmzZu1cuVKde7cWYMGDVKHDh0UGRmpiIgIrV69WgMGDCiKOQEAACTdxZWX1NRU1a1bV9Kt9S23Pxrdvn177dy507vTAQAA3MHjeKlbt65OnDghSWrQoIHWrVsn6dYVmds3agQAACgqHsfLoEGDdPjwYUnS+PHjtWDBAgUEBGj06NEaO3as1wcEAAD4JY9vzHinU6dOKTExUZGRkWrSpIm35io0vmEXKJ34hl2g9PLqN+wWJCIiQhEREYU9DQAAgFvcipf4+Hi3Tzhy5Mi7HgYAAODXuPW2UZ06ddw7mc2m48ePF3ooAACA/BR6zUtJdT2rVL4s4J4XVM6mlJ9u+HoMAEUgskqgW8d5/GkjAAAAXyJeAACAUYgXAABgFOIFAAAYhXgBAABGuat42bVrl5566im1adNG586dkyStWrVKX375pVeHAwAAuJPH8fL++++rR48eCgwM1MGDB5WRkSFJunr1qmbMmOH1AQEAAH7J43h59dVXtXjxYi1ZskTlypVzbm/Xrp2++eYbrw4HAABwJ4/jJTk5WR07dsy1PSwsTFeuXPHGTAAAAPnyOF6qVaumlJSUXNu//PJL1a1b1ytDAQAA5MfjeBkyZIhGjRqlffv2yWaz6ccff9Tq1as1ZswYDR06tChmBAAAcHLrrtK/NH78eDkcDnXt2lXXr19Xx44dZbfbNWbMGI0YMaIoZgQAAHC66xszZmZmKiUlRWlpaWrUqJFCQkK8PVuhcGNGoHTixoxA6eXujRk9vvJym7+/vxo1anS3vw4AAHBXPI6XLl26yGaz5bv/888/L9RAAAAABfE4Xpo1a+byOCsrS4cOHdJ3332n6Ohob80FAACQJ4/jZe7cuXlunzx5stLS0go9EAAAQEHuesHunVJSUtSqVSulpqZ643SFxoJdoHRiwS5Qerm7YNdrd5Xeu3evAgICvHU6AACAPHn8tlG/fv1cHluWpfPnz+vAgQOaMGGC1wYDAADIi8fxEhYW5vK4TJkyql+/vqZOnaru3bt7bTAAAIC8eBQvOTk5GjRokBo3bqwKFSoU1UwAAAD58mjNi5+fn7p3787dowEAgM94vGD34Ycf1vHjx4tiFgAAgF/lcby8+uqrGjNmjLZs2aLz58/r2rVrLj8AAABFye3veZk6dapeeuklhYaG/uuXf3GbAMuyZLPZlJOT4/0p7wLf8wKUTnzPC1B6ufs9L27Hi5+fn86fP6+kpKQCj+vUqZNbT1zUiBegdCJegNLL63eVvt04JSVOAADAvcmjNS8F3U0aAACgOHj0PS/16tX71YApKfc2AgAApZNH8TJlypRc37ALAABQnNxesFumTBlduHBBVapUKeqZvIIFu0DpxIJdoPTy+l2lWe8CAABKArfjxc0LNAAAAEXK7TUvDoejKOcAAABwi8e3BwAAAPAl4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABilrK8HANyReOBrrVy+TEeOfK9LP/+s19+Yry5duzn3T3xlvDb/baPL77Rt114L3lpazJMCKMi6Vcu0Z+c2nT11Uv52uxo+3FSDhr6oB2rVdh6TmZGhpQvmaOe2T5SVlakWrdpqWMxfVKHi/c5jDh3Yp1XLFujUsRTZAwPVtWcvRQ8ZLr+y/LV2L+DKC4xw48YN1avfQLGvTMz3mLbtO2jr9l3On7hZc4pxQgDu+PZQon7/+H9ozlsr9ercxcrOztZ/xQzVzRs3nMcsefM17d+9U7FTZ2vmm8uUeulnTX8lxrn/eEqyJr08XFGt2in+nTUaP/mv2rd7h5a/Fe+LlwQfIFFhhPYdOqp9h44FHuPv769KlSoX00QA7sa0OQtdHsf8Zaqe7P2IUpKP6OFmUUpP+6c+/XCDxk6MU9OoVpKkF2On6PmnHtfR7/+fGvymiXZt+0R1HnxITw76syQp/IFaemboi5o58WU9OejPCgoKLvbXheLFlReUGge+3q9HOrZV33/rqelTJ+vKlcu+HgnAr0hPT5MkhZQPkySlJCcpOztbzVq2dh5TM6KOKletrqTvDkuSsrKy5O9vdzmPv92uzMwMpSQfKabJ4UvGX3nJyMhQRkaGyza73S6V8ffRRPCFtu066JFu3VWjRg2dPXNGb74xV8Off04rVq+Rn5+fr8cDkAeHw6G342erUeNmql03UpJ0OfWSypYrp5DQ8i7HVqhYUZdT/0eS1KJVG/3t/67W9s8+Vocu3XU59ZLeS3hbkpT6P5eK90XAJ0r0lZczZ87omWeeKfCYuLg4hYWFufzExcUV04QoKXo+9nt17vKIHqpXX126dlP8gsX6/rtvdeDr/b4eDUA+Fr0ep1MnUjRu8l89+r0WrdrqmaGjteC16erbtZWee7KPWv6uvSSpjK1E/7UGLynR/5VTU1O1YsWKAo+JjY3V1atXXX5iY2OLaUKUVA/UrKn7KlTQmdOnfD0KgDwsmhun/Xt3Ku6NpapUpapze4WKlZSdlaW0f15zOf5yaqrLp40e/8+nte7jXUpY/7He27Jdv2vfWZJULbxGscwP3/Lp20abNm0qcP/x48d/9Rx2u/3W20R3uJ5l3fVcMN/FCxd09coVVapcxdejAPgFy7K0eN5M7d35ueLil+aKjcj6DVW2bFkdTtyvdp1vfR3C2dMn9fPF82r4cFOXY202m+6vdOvP+I7P/q7KVarpwXoNi+eFwKd8Gi99+/aVzWaTZeUfGjabrRgnQkl1/Xq6zpw+7Xx87txZJR9NUvn//1bhWwsXqOuj3VWpUiWdOXNGb7w+WzVr1VLbdu19ODWAOy18fYZ2fPaxJsyYp8CgYOcaleCQENntAQoOCVX33z+uJfPnKKR8mIKCg7V43kw1eLiJGvymifM877+boKjW7WQrY9OeHZ9r/ep3NH7KLNa43SNsVkHlUMRq1KihhQsXqk+fPnnuP3TokKKiopSTk+PxubnyUroc2L9PQ56JzrW9V5+++suEyYoZ+YKOHk3SP6/9U5WrVFabtu00bPgo3V+pkg+mRVEKKmdTyk83fv1AlEi/79Asz+0vxk7Ro4/d+rvg9pfU7fjs7y5fUlfx/n/9eY4dNUTHfkhSVmaW6kTW05OD/uxc9wJzRVYJdOs4n8ZL79691axZM02dOjXP/YcPH1bz5s3lcDg8PjfxApROxAtQerkbLz5922js2LFKT0/Pd39kZKS++OKLYpwIAACUdD698lKUuPIClE5ceQFKL3evvJToj0oDAADciXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYhXgBAABGIV4AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAACAUYgXAABgFOIFAAAYxWZZluXrIYC7lZGRobi4OMXGxsput/t6HABexJ9v5Id4gdGuXbumsLAwXb16VeXLl/f1OAC8iD/fyA9vGwEAAKMQLwAAwCjECwAAMArxAqPZ7XZNmjSJxXxAKcSfb+SHBbsAAMAoXHkBAABGIV4AAIBRiBcAAGAU4gUAABiFeIHRFixYoNq1aysgIECtW7fW/v37fT0SgELauXOnevXqpfDwcNlsNm3cuNHXI6GEIV5grLVr1yomJkaTJk3SN998o6ZNm6pHjx766aeffD0agEJIT09X06ZNtWDBAl+PghKKj0rDWK1bt9Zvf/tbzZ8/X5LkcDhUs2ZNjRgxQuPHj/fxdAC8wWazacOGDerbt6+vR0EJwpUXGCkzM1OJiYnq1q2bc1uZMmXUrVs37d2714eTAQCKGvECI126dEk5OTmqWrWqy/aqVavqwoULPpoKAFAciBcAAGAU4gVGqlSpkvz8/HTx4kWX7RcvXlS1atV8NBUAoDgQLzCSv7+/oqKitG3bNuc2h8Ohbdu2qU2bNj6cDABQ1Mr6egDgbsXExCg6OlotW7ZUq1atNG/ePKWnp2vQoEG+Hg1AIaSlpSklJcX5+MSJEzp06JAqVqyoWrVq+XAylBR8VBpGmz9/vmbPnq0LFy6oWbNmio+PV+vWrX09FoBC2L59u7p06ZJre3R0tBISEop/IJQ4xAsAADAKa14AAIBRiBcAAGAU4gUAABiFeAEAAEYhXgAAgFGIFwAAYBTiBQAAGIV4AQAARiFeAHjdwIED1bdvX+fjzp0768UXXyz2ObZv3y6bzaYrV67ke4zNZtPGjRvdPufkyZPVrFmzQs118uRJ2Ww2HTp0qFDnAe5VxAtwjxg4cKBsNptsNpv8/f0VGRmpqVOnKjs7u8if+4MPPtC0adPcOtad4ABwb+PGjMA9pGfPnlq+fLkyMjL00Ucf6YUXXlC5cuUUGxub69jMzEz5+/t75XkrVqzolfMAgMSVF+CeYrfbVa1aNUVERGjo0KHq1q2bNm3aJOlfb/VMnz5d4eHhql+/viTpzJkz6t+/v+677z5VrFhRffr00cmTJ53nzMnJUUxMjO677z7df//9evnll3XnLdPufNsoIyND48aNU82aNWW32xUZGally5bp5MmTzhvyVahQQTabTQMHDpQkORwOxcXFqU6dOgoMDFTTpk21fv16l+f56KOPVK9ePQUGBqpLly4uc7pr3LhxqlevnoKCglS3bl1NmDBBWVlZuY576623VLNmTQUFBal///66evWqy/6lS5eqYcOGCggIUIMGDbRw4UKPZwGQN+IFuIcFBgYqMzPT+Xjbtm1KTk7W1q1btWXLFmVlZalHjx4KDQ3Vrl27tHv3boWEhKhnz57O35szZ44SEhL0zjvv6Msvv1Rqaqo2bNhQ4PP+6U9/0nvvvaf4+HglJSXprbfeUkhIiGrWrKn3339fkpScnKzz58/rjTfekCTFxcVp5cqVWrx4sb7//nuNHj1aTz31lHbs2CHpVmT169dPvXr10qFDhzR48GCNHz/e438noaGhSkhI0JEjR/TGG29oyZIlmjt3rssxKSkpWrdunTZv3qy///3vOnjwoIYNG+bcv3r1ak2cOFHTp09XUlKSZsyYoQkTJmjFihUezwMgDxaAe0J0dLTVp08fy7Isy+FwWFu3brXsdrs1ZswY5/6qVataGRkZzt9ZtWqVVb9+fcvhcDi3ZWRkWIGBgdYnn3xiWZZlVa9e3Zo1a5Zzf1ZWlvXAAw84n8uyLKtTp07WqFGjLMuyrOTkZEuStXXr1jzn/OKLLyxJ1uXLl53bbt68aQUFBVl79uxxOfbZZ5+1nnjiCcuyLCs2NtZq1KiRy/5x48blOtedJFkbNmzId//s2bOtqKgo5+NJkyZZfn5+1tmzZ53bPv74Y6tMmTLW+fPnLcuyrAcffNB69913Xc4zbdo0q02bNpZlWdaJEycsSdbBgwfzfV4A+WPNC3AP2bJli0JCQpSVlSWHw6Enn3xSkydPdu5v3LixyzqXw4cPKyUlRaGhoS7nuXnzpo4dO6arV6/q/Pnzat26tXNf2bJl1bJly1xvHd126NAh+fn5qVOnTm7PnZKSouvXr+vRRx912Z6ZmanmzZtLkpKSklzmkKQ2bdq4/Ry3rV27VvHx8Tp27JjS0tKUnZ2t8uXLuxxTq1Yt1ahRw+V5HA6HkpOTFRoaqmPHjunZZ5/VkCFDnMdkZ2crLCzM43kA5Ea8APeQLl26aNGiRfL391d4eLjKlnX9X0BwcLDL47S0NEVFRWn16tW5zlW5cuW7miEwMNDj30lLS5Mkffjhhy7RIN1ax+Mte/fu1YABAzRlyhT16NFDYWFhWrNmjebMmePxrEuWLMkVU35+fl6bFbiXES/APSQ4OFiRkZFuH9+iRQutXbtWVapUyXX14bbq1atr37596tixo6RbVxgSExPVokWLPI9v3LixHA6HduzYoW7duuXaf/vKT05OjnNbo0aNZLfbdfr06Xyv2DRs2NC5+Pi2r7766tdf5C/s2bNHEREReuWVV5zbTp06leu406dP68cff1R4eLjzecqUKaP69euratWqCg8P1/HjxzVgwACPnh+Ae1iwCyBfAwYMUKVKldSnTx/t2rVLJ06c0Pbt2zVy5EidPXtWkjRq1CjNnDlTGzdu1NGjRzVs2LACv6Oldu3aio6O1jPPPKONGzc6z7lu3TpJUkREhGw2m7Zs2aKff/5ZaWlpCg0N1ZgxYzR69GitWLFCx44d0zfffKM333zTuQj2+eef1z/+8Q+NHTtWycnJevfdd5WQkODR633ooYd0+vRprVmzRseOHVN8fHyei48DAgIUHR2tw4cPa9euXRo5cqT69++vatWqSZKmTJmiuLg4xcfH64cfftC3336r5cuX6/XXX/doHgB5I14A5CsoKEg7d+5UrVq11K9fPzVs2FDPPvusbt686bwS89JLL+npp59WdHS02rRpo9DQUD3++OMFnnfRokX6wx/+oGHDhqlBgwYaMmSI0tPTJUk1atTQlClTNH78eFWtWlXDhw+XJE2bNk0TJkxQXFycGjZsqJ49e+rDDz9UnTp1JN1ah/L+++9r48aNatq0qRYvXqwZM2Z49Hp79+6t0aNHa/jw4WrWrJn27NmjCRMm5DouMjJS/fr102OPPabu3burSZMmLh+FHjx4sJYuXarly5ercePG6tSpkxISEpyzAigcm5XfqjoAAIASiCsvAADAKMQLAAAwCvECAACMQrwAAACjEC8AAMAoxAsAADAK8QIAAIxCvAAAAKMQLwAAwCjECwAAMArxAgAAjPK/Bn1bLIjzhZoAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Confusion matrix plotting\n",
    "mtx = confusion_matrix(y_test, preds)\n",
    "sns.heatmap(mtx, annot=True, fmt='d', linewidths=.5, cmap=\"Blues\", cbar=False)\n",
    "plt.ylabel('True label')\n",
    "plt.xlabel('Predicted label')\n",
    "plt.show()  # Display the plot"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\keras\\src\\engine\\training.py:3079: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.\n",
      "  saving_api.save_model(\n"
     ]
    }
   ],
   "source": [
    "# Save the trained model\n",
    "model.save(\"dnn_smsspam_model.h5\")\n",
    "dnn_smsspam_model = tf.keras.models.load_model('dnn_smsspam_model.h5')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "def predict_message(input_text):\n",
    "    # Process input text similarly to training data\n",
    "    encoded_input = tokeniser.texts_to_sequences([input_text])\n",
    "    padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=max_length, padding='post')\n",
    "    \n",
    "    # Get the probabilities of being classified as \"Spam\" for each input\n",
    "    predictions = dnn_smsspam_model.predict(padded_input)\n",
    "    \n",
    "    # Define a threshold (e.g., 0.5) for classification\n",
    "    threshold = 0.5\n",
    "\n",
    "    # Make the predictions based on the threshold for each input\n",
    "    results = []\n",
    "    for prediction in predictions:\n",
    "        if prediction > threshold:\n",
    "            results.append(\"Spam\")\n",
    "        else:\n",
    "            results.append(\"Not spam\")\n",
    "    \n",
    "    return results\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1/1 [==============================] - 0s 57ms/step\n",
      "Message: Your free ringtone is waiting to be collected. Simply text the password \"MIX\" to 85069 to verify. Get Usher and Britney. FML, PO Box 5249, MK17 92H. 450Ppw 16 haWatching telugu movie..wat abt u? \n",
      "The message is classified as: ['Spam']\n"
     ]
    }
   ],
   "source": [
    "# Take user input for prediction\n",
    "user_input =('Your free ringtone is waiting to be collected. Simply text the password \"MIX\" to 85069 to verify. Get Usher and Britney. FML, PO Box 5249, MK17 92H. 450Ppw 16 haWatching telugu movie..wat abt u?')\n",
    "prediction_result = predict_message(user_input)\n",
    "print(f\"Message: {user_input} \\nThe message is classified as: {prediction_result}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1/1 [==============================] - 0s 23ms/step\n",
      "Message: XXXMobileMovieClub: To use your credit, click the WAP link in the next txt message or click here>> http://wap. xxxmobilemovieclub.com?n=QJKGIGHJJGCBL \n",
      "The message is classified as: ['Spam']\n"
     ]
    }
   ],
   "source": [
    "\n",
    "user_input_1 = ('XXXMobileMovieClub: To use your credit, click the WAP link in the next txt message or click here>> http://wap. xxxmobilemovieclub.com?n=QJKGIGHJJGCBL')\n",
    "\n",
    "\n",
    "prediction_result_1 = predict_message(user_input_1)\n",
    "print(f\"Message: {user_input_1} \\nThe message is classified as: {prediction_result_1}\")\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1/1 [==============================] - 0s 18ms/step\n",
      "Message: Hi i want to speak to you \n",
      "The message is classified as: ['Not spam']\n"
     ]
    }
   ],
   "source": [
    "user_input= ('Hi i want to speak to you')\n",
    "\n",
    "\n",
    "prediction_result= predict_message(user_input)\n",
    "print(f\"Message: {user_input} \\nThe message is classified as: {prediction_result}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "DLENV",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}