File size: 2,229 Bytes
0d5c842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c58d87
 
6013867
0d5c842
 
 
 
 
3c58d87
0d5c842
 
9a0cc06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b640ff8
 
 
 
 
 
 
 
 
 
 
 
6013867
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
import streamlit as st
import requests
import time 
from transformers import pipeline
import os


# Set the page configuration
st.set_page_config(
        page_title="Hate Speech Detection",
        page_icon="📖",  #":bar_chart:"
        layout='centered'
    )

#title = r"$\textsf{\small Hate Speech Detection}$"
#st.title(title)
#st.write("In this HuggingFace space you will be able to use our Hate Speech Detection model built at [VERİM - Center of Excellence in Data Analytics - Sabanci University](https://github.com/verimsu).")


# Turkish 
sentiment_pipeline_tr = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech")  # "gritli/bert-sentiment-analyses-imdb"
label_dict = {'LABEL_1': 'Hate ❌', 'LABEL_0': 'Non-hate ✅'}

def hsd_turkish(text_in):

        result_tr = sentiment_pipeline_tr(tr_input)
        sentiment_tr = result_tr[0]["label"]
        label_dict = {'LABEL_1': 'Hate ❌', 'LABEL_0': 'Non-hate ✅'}  #🚫
        sentiment_tr = label_dict[sentiment_tr]
        return sentiment_tr


with gr.Blocks() as demo:
    with gr.Tab("English to Korean"):
        gr.Interface(
          fn=translate_en_ko,
          inputs='textbox',
          outputs='textbox',
        )
    with gr.Tab("Korean to English"):
        gr.Interface(
          fn=translate_ko_en,
          inputs='textbox',
          outputs='textbox',
        )

demo.launch()

iface = gr.Interface(
    fn=hsd_turkish, 
    inputs=gr.Textbox(lines=2, placeholder="Enter Text here:"), 
    outputs=['text'], #gr.Textbox()
    title = "HSD in Turkish",
    theme = "peach"
)

iface.launch(debug=True,inline=False)





st.sidebar.title("Hate Speech Detection")
#st.sidebar.write("In this HuggingFace space you can use Hate Speech Detection model built at [VERİM - Center of Excellence in Data Analytics - Sabanci University](https://github.com/verimsu).")
st.sidebar.write('This tool is developed in the context of the EU project "Utilizing Digital Technology for Social Cohesion, Positive Messaging and Peace by Boosting Collaboration, Exchange and Solidarity" (EuropeAid/170389/DD/ACT/Multi) by [Sabanci University Center of Excellence in Data Analytics](https://github.com/verimsu).')