File size: 8,497 Bytes
bb65e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from datasets import load_dataset
import numpy as np
from sklearn.svm import SVC
from tqdm.notebook import tqdm
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
import nltk
from nltk.corpus import stopwords
from nltk import word_tokenize
from nltk import pos_tag
import pickle
import time
from nltk.corpus import names, gazetteers
from sklearn.model_selection import KFold
from itertools import chain
from sklearn.metrics import precision_score, recall_score, fbeta_score, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns


nltk.download('stopwords')
stopwords = stopwords.words('english')

pos_tags = [ 'CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS',
                'NNS', 'NN|SYM', 'PDT', 'POS', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD',
                'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP', 'WP$', 'WRB'
            ]

def feature_vector(word, prev_word_pos_tag, next_word_pos_tag, current_word_pos_tag):
    vec = np.zeros(116).astype('float32')
    if(word.istitle()):
        vec[0] = 1
    if word.lower() in stopwords:
        vec[1] = 1
    if(word.isupper()):
        vec[2] = 1
    vec[3] = len(word)
    vec[4] = word.isdigit()

    if prev_word_pos_tag!=-1:
      vec[5+prev_word_pos_tag] = 1

    if next_word_pos_tag!=-1:
      vec[42+next_word_pos_tag] = 1

    if current_word_pos_tag!=-1:
      vec[79+current_word_pos_tag] = 1
    
    return vec


def feature_vector2(word, prev_word_pos_tag, next_word_pos_tag, current_word_pos_tag):
    vec = np.zeros(9).astype('float32')
    if(word.istitle()):
        vec[0] = 1
    if word.lower() in stopwords:
        vec[1] = 1
    if(word.isupper()):
        vec[2] = 1
    vec[3] = len(word)
    vec[4] = word.isdigit()
    # idx : -11, 0...36
    # if prev_word_pos_tag!=-11:
    #   vec[5+prev_word_pos_tag] = 1

    # if next_word_pos_tag!=-11:
    #   vec[42+next_word_pos_tag] = 1

    # if current_word_pos_tag!=-11:
    #   vec[79+current_word_pos_tag] = 1

    vec[5] = 1 if word in places else 0
    vec[6] = 1 if word in people else 0
    vec[7] = 1 if word in countries else 0
    vec[8] = 1 if word in nationalities else 0
    return vec


# This function is used to make dataset with features and target label

def create_data(data):
    x_train = []
    y_train = []
    for x in data:
        for y in range(len(x['tokens'])):
            prev_pos = -1 if y==0 or x['pos_tags'][y-1]<10 else x['pos_tags'][y-1]
            next_pos = -1 if y==len(x['tokens'])-1 or x['pos_tags'][y+1]<10 else x['pos_tags'][y+1]
            current_pos = -1 if x['pos_tags'][y]<10 else x['pos_tags'][y]
            wordVec = feature_vector(x['tokens'][y], prev_pos-10, next_pos-10, current_pos-10)
            x_train.append(wordVec)
            y_train.append(1 if x['ner_tags'][y]!=0 else 0)
    return x_train, y_train

def evaluate_overall_metrics(predictions, folds):
    precision, recall, f0_5_score, f1_score, f2_score = 0, 0, 0, 0, 0

    for i, (test_label_flat, y_pred_flat) in enumerate(predictions):
        # test_label_flat = list(chain.from_iterable(test_label))
        # y_pred_flat = list(chain.from_iterable(y_pred))

        # Calculate scores
        f0_5_score += fbeta_score(test_label_flat, y_pred_flat, beta=0.5, average='weighted')
        f1_score += fbeta_score(test_label_flat, y_pred_flat, beta=1, average='weighted')
        f2_score += fbeta_score(test_label_flat, y_pred_flat, beta=2, average='weighted')
        precision += precision_score(test_label_flat, y_pred_flat, average='weighted')
        recall += recall_score(test_label_flat, y_pred_flat, average='weighted')

    # Averaging across folds
    f0_5_score /= folds
    f1_score /= folds
    f2_score /= folds
    precision /= folds
    recall /= folds

    print(f'Overall Metrics:')
    print(f'Precision : {precision:.3f}')
    print(f'Recall : {recall:.3f}')
    print(f'F0.5 Score : {f0_5_score:.3f}')
    print(f'F1 Score : {f1_score:.3f}')
    print(f'F2 Score : {f2_score:.3f}\n')

def evaluate_per_pos_metrics(predictions, labels):
    combined_true = []
    combined_pred = []

    # Flatten the list of lists structure
    for test_label, y_pred in predictions:
        # for sentence_labels, sentence_preds in zip(test_label, y_pred):
        combined_true.extend(test_label)
        combined_pred.extend(y_pred)

    for tag in labels:
        true_binary = [1 if t == tag else 0 for t in combined_true]
        pred_binary = [1 if p == tag else 0 for p in combined_pred]

        # Calculate metrics for the tag
        precision = precision_score(true_binary, pred_binary, average='binary', zero_division=0)
        recall = recall_score(true_binary, pred_binary, average='binary', zero_division=0)
        f1_score = fbeta_score(true_binary, pred_binary, beta=1, average='binary', zero_division=0)

        print(f"Metrics for {tag}:")
        print(f'Precision : {precision:.3f}')
        print(f'Recall : {recall:.3f}')
        print(f'F1 Score : {f1_score:.3f}\n')

def plot_confusion_matrix(predictions, labels, folds):
    matrix = None
    for i, (test_label_flat, y_pred_flat) in enumerate(predictions):
        # test_label_flat = list(chain.from_iterable(test_label))
        # y_pred_flat = list(chain.from_iterable(y_pred))

        # Compute confusion matrix for this fold
        cm = confusion_matrix(test_label_flat, y_pred_flat, labels=labels)
        if i == 0:
            matrix = cm
        else:
            matrix += cm

    matrix = matrix.astype('float')
    matrix = matrix / folds
    matrix = matrix / np.sum(matrix, axis=1, keepdims=True)  # Normalize

    plt.figure(figsize=(10, 8))
    sns.heatmap(matrix, annot=True, fmt=".2f", cmap='Blues', xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.title('Normalized Confusion Matrix for NER')
    plt.show()

if __name__ == "__main__":
    data = load_dataset("conll2003", trust_remote_code=True)
    d_train = data['train']
    d_validation = data['validation']
    d_test = data['test']

    nltk.download('gazetteers')
    places=set(gazetteers.words())
    people=set(names.words())
    countries=set(gazetteers.words('countries.txt'))
    nationalities=set(gazetteers.words('nationalities.txt'))
    x_train, y_train = create_data(d_train)
    x_val, y_val = create_data(d_validation)
    x_test, y_test = create_data(d_test)
    all_X_train = np.concatenate((x_train, x_val, x_test))
    all_y_train = np.concatenate((y_train, y_val, y_test))

    #K-Fold
    num_fold = 5
    kf = KFold(n_splits=num_fold, random_state=42, shuffle=True)
    indices = np.arange(len(all_X_train))

    predictions = []
    all_models = []

    for i, (train_index, test_index) in enumerate(kf.split(indices)):
        print(f"Fold {i} Train Length: {len(train_index)} Test Length: {len(test_index)}")
        # all_folds.append((train_index, test_index))# Standardize the features such that all features contribute equally to the distance metric computation of the SVM
        X_train = all_X_train[train_index]
        y_train = all_y_train[train_index]

        X_test = all_X_train[test_index]
        y_test = all_y_train[test_index]

        # scaler = StandardScaler()
        # Fit only on the training data (i.e. compute mean and std)
        # X_train = scaler.fit_transform(X_train)

        # Use the train data fit values to scale val and test
        # X_train = scaler.transform(X_train)
        # X_val   = scaler.transform(X_val)
        # X_test  = scaler.transform(X_test)

        model = SVC(random_state = 42, verbose = True)
        model.fit(X_train, y_train)

        y_pred_val = model.predict(X_test)

        print("-------"*6)
        print(classification_report(y_true=y_test, y_pred=y_pred_val))
        print("-------"*6)
        
        pickle.dump(model, open(f"ner_svm_{str(i)}.pkl", 'wb'))

        predictions.append((y_test, y_pred_val))
        all_models.append(model)
        break


    FOLDS = 5
    labels = sorted(model.classes_)
    evaluate_overall_metrics(predictions, FOLDS)
    evaluate_per_pos_metrics(predictions, labels)
    plot_confusion_matrix(predictions, labels, FOLDS)