File size: 7,167 Bytes
ff17aaa 4f7865a ff17aaa 213351b ff17aaa 727c462 8a0e72f 727c462 ff17aaa 462148f ff17aaa 462148f ff17aaa 610f512 ff17aaa 213351b ff17aaa 213351b ff17aaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import argparse
import functools
import json
import os
from pathlib import Path
import faiss
import gradio as gr
import numpy as np
import PIL.Image
import requests
import tensorflow as tf
from huggingface_hub import hf_hub_download
from Utils import dbimutils
TITLE = "## Danbooru Explorer"
DESCRIPTION = """
Image similarity-based retrieval tool using:
- [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2) as feature extractor
- [Faiss](https://github.com/facebookresearch/faiss) and [autofaiss](https://github.com/criteo/autofaiss) for indexing
Also, check out [SmilingWolf/danbooru2022_embeddings_playground](https://huggingface.co/spaces/SmilingWolf/danbooru2022_embeddings_playground) for a similar space with experimental support for text input combined with image input.
"""
CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV_MODEL_REVISION = "v2.0"
CONV_FEXT_LAYER = "predictions_norm"
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
return parser.parse_args()
def download_model(model_repo, model_revision):
model_files = [
{"filename": "saved_model.pb", "subfolder": ""},
{"filename": "keras_metadata.pb", "subfolder": ""},
{"filename": "variables.index", "subfolder": "variables"},
{"filename": "variables.data-00000-of-00001", "subfolder": "variables"},
]
model_file_paths = []
for elem in model_files:
model_file_paths.append(
Path(
hf_hub_download(
model_repo,
revision=model_revision,
**elem,
)
)
)
model_path = model_file_paths[0].parents[0]
return model_path
def load_model(model_repo, model_revision, feature_extraction_layer):
model_path = download_model(model_repo, model_revision)
full_model = tf.keras.models.load_model(model_path)
model = tf.keras.models.Model(
full_model.inputs, full_model.get_layer(feature_extraction_layer).output
)
return model
def danbooru_id_to_url(image_id, selected_ratings, api_username="", api_key=""):
headers = {"User-Agent": "image_similarity_tool"}
ratings_to_letters = {
"General": "g",
"Sensitive": "s",
"Questionable": "q",
"Explicit": "e",
}
acceptable_ratings = [ratings_to_letters[x] for x in selected_ratings]
image_url = f"https://danbooru.donmai.us/posts/{image_id}.json"
if api_username != "" and api_key != "":
image_url = f"{image_url}?api_key={api_key}&login={api_username}"
r = requests.get(image_url, headers=headers)
if r.status_code != 200:
return None
content = json.loads(r.text)
image_url = content["large_file_url"] if "large_file_url" in content else None
image_url = image_url if content["rating"] in acceptable_ratings else None
return image_url
class SimilaritySearcher:
def __init__(self, model, images_ids):
self.knn_index = None
self.knn_metric = None
self.model = model
self.images_ids = images_ids
def change_index(self, knn_metric):
if knn_metric == self.knn_metric:
return
if knn_metric == "ip":
self.knn_index = faiss.read_index("index/ip_knn.index")
config = json.loads(open("index/ip_infos.json").read())["index_param"]
elif knn_metric == "cosine":
self.knn_index = faiss.read_index("index/cosine_knn.index")
config = json.loads(open("index/cosine_infos.json").read())["index_param"]
faiss.ParameterSpace().set_index_parameters(self.knn_index, config)
self.knn_metric = knn_metric
def predict(
self, image, selected_ratings, knn_metric, api_username, api_key, n_neighbours
):
_, height, width, _ = self.model.inputs[0].shape
self.change_index(knn_metric)
# Alpha to white
image = image.convert("RGBA")
new_image = PIL.Image.new("RGBA", image.size, "WHITE")
new_image.paste(image, mask=image)
image = new_image.convert("RGB")
image = np.asarray(image)
# PIL RGB to OpenCV BGR
image = image[:, :, ::-1]
image = dbimutils.make_square(image, height)
image = dbimutils.smart_resize(image, height)
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
target = self.model(image).numpy()
if self.knn_metric == "cosine":
faiss.normalize_L2(target)
dists, indexes = self.knn_index.search(target, k=n_neighbours)
neighbours_ids = self.images_ids[indexes][0]
neighbours_ids = [int(x) for x in neighbours_ids]
captions = []
image_urls = []
for image_id, dist in zip(neighbours_ids, dists[0]):
current_url = danbooru_id_to_url(
image_id, selected_ratings, api_username, api_key
)
if current_url is not None:
image_urls.append(current_url)
captions.append(f"{image_id}/{dist:.2f}")
return list(zip(image_urls, captions))
def main():
args = parse_args()
model = load_model(CONV_MODEL_REPO, CONV_MODEL_REVISION, CONV_FEXT_LAYER)
images_ids = np.load("index/cosine_ids.npy")
searcher = SimilaritySearcher(model=model, images_ids=images_ids)
with gr.Blocks() as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Row():
input = gr.Image(type="pil", label="Input")
with gr.Column():
with gr.Row():
api_username = gr.Textbox(label="Danbooru API Username")
api_key = gr.Textbox(label="Danbooru API Key")
selected_ratings = gr.CheckboxGroup(
choices=["General", "Sensitive", "Questionable", "Explicit"],
value=["General", "Sensitive"],
label="Ratings",
)
with gr.Row():
selected_metric = gr.Radio(
choices=["cosine"],
value="cosine",
label="Metric selection",
visible=False,
)
n_neighbours = gr.Slider(
minimum=1,
maximum=20,
value=5,
step=1,
label="# of images",
)
find_btn = gr.Button("Find similar images")
similar_images = gr.Gallery(label="Similar images", columns=[5])
find_btn.click(
fn=searcher.predict,
inputs=[
input,
selected_ratings,
selected_metric,
api_username,
api_key,
n_neighbours,
],
outputs=[similar_images],
)
demo.queue()
demo.launch(share=args.share)
if __name__ == "__main__":
main()
|