Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,022 Bytes
d4f8fc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
A script to benchmark builtin models.
Note: this script has an extra dependency of psutil.
"""
import itertools
import logging
import psutil
import torch
import tqdm
from fvcore.common.timer import Timer
from torch.nn.parallel import DistributedDataParallel
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
DatasetFromList,
build_detection_test_loader,
build_detection_train_loader,
)
from detectron2.engine import SimpleTrainer, default_argument_parser, hooks, launch
from detectron2.modeling import build_model
from detectron2.solver import build_optimizer
from detectron2.utils import comm
from detectron2.utils.events import CommonMetricPrinter
from detectron2.utils.logger import setup_logger
logger = logging.getLogger("detectron2")
def setup(args):
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.SOLVER.BASE_LR = 0.001 # Avoid NaNs. Not useful in this script anyway.
cfg.merge_from_list(args.opts)
cfg.freeze()
setup_logger(distributed_rank=comm.get_rank())
return cfg
def benchmark_data(args):
cfg = setup(args)
timer = Timer()
dataloader = build_detection_train_loader(cfg)
logger.info("Initialize loader using {} seconds.".format(timer.seconds()))
timer.reset()
itr = iter(dataloader)
for i in range(10): # warmup
next(itr)
if i == 0:
startup_time = timer.seconds()
timer = Timer()
max_iter = 1000
for _ in tqdm.trange(max_iter):
next(itr)
logger.info(
"{} iters ({} images) in {} seconds.".format(
max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds()
)
)
logger.info("Startup time: {} seconds".format(startup_time))
vram = psutil.virtual_memory()
logger.info(
"RAM Usage: {:.2f}/{:.2f} GB".format(
(vram.total - vram.available) / 1024 ** 3, vram.total / 1024 ** 3
)
)
# test for a few more rounds
for _ in range(10):
timer = Timer()
max_iter = 1000
for _ in tqdm.trange(max_iter):
next(itr)
logger.info(
"{} iters ({} images) in {} seconds.".format(
max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds()
)
)
def benchmark_train(args):
cfg = setup(args)
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
if comm.get_world_size() > 1:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
)
optimizer = build_optimizer(cfg, model)
checkpointer = DetectionCheckpointer(model, optimizer=optimizer)
checkpointer.load(cfg.MODEL.WEIGHTS)
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0
data_loader = build_detection_train_loader(cfg)
dummy_data = list(itertools.islice(data_loader, 100))
def f():
data = DatasetFromList(dummy_data, copy=False)
while True:
yield from data
max_iter = 400
trainer = SimpleTrainer(model, f(), optimizer)
trainer.register_hooks(
[hooks.IterationTimer(), hooks.PeriodicWriter([CommonMetricPrinter(max_iter)])]
)
trainer.train(1, max_iter)
@torch.no_grad()
def benchmark_eval(args):
cfg = setup(args)
model = build_model(cfg)
model.eval()
logger.info("Model:\n{}".format(model))
DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0
data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
dummy_data = list(itertools.islice(data_loader, 100))
def f():
while True:
yield from DatasetFromList(dummy_data, copy=False)
for _ in range(5): # warmup
model(dummy_data[0])
max_iter = 400
timer = Timer()
with tqdm.tqdm(total=max_iter) as pbar:
for idx, d in enumerate(f()):
if idx == max_iter:
break
model(d)
pbar.update()
logger.info("{} iters in {} seconds.".format(max_iter, timer.seconds()))
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--task", choices=["train", "eval", "data"], required=True)
args = parser.parse_args()
assert not args.eval_only
if args.task == "data":
f = benchmark_data
elif args.task == "train":
"""
Note: training speed may not be representative.
The training cost of a R-CNN model varies with the content of the data
and the quality of the model.
"""
f = benchmark_train
elif args.task == "eval":
f = benchmark_eval
# only benchmark single-GPU inference.
assert args.num_gpus == 1 and args.num_machines == 1
launch(f, args.num_gpus, args.num_machines, args.machine_rank, args.dist_url, args=(args,))
|