File size: 7,667 Bytes
5560186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e296e4
 
 
5560186
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
Data service provider
"""
import json
from typing import List

import pandas as pd

from app.backend.constant import ModelProvider


class DataEngine:

    def __init__(self):
        self.df = self.init_dataframe()

    @property
    def leaderboards(self):
        """
        Get leaderboard data
        """
        with open('./mock_data/leaderboard.json', 'r') as f:
            return json.load(f)

    @property
    def models(self):
        """
        Get models data
        """
        with open('./mock_data/models.json', 'r') as f:
            return json.load(f)

    @property
    def tasks(self):
        """
        Get tasks data
        """
        with open('./mock_data/tasks.json', 'r') as f:
            return json.load(f)

    @property
    def results(self):
        """
        Get results data
        """
        with open('./mock_data/results.json', 'r') as f:
            return json.load(f)

    def init_dataframe(self):
        """
        Initialize DataFrame
        """
        d = {"hello": [123], "world": [456]}
        return pd.DataFrame(d)

    def _check_providers(self, organization: str, providers: List):
        if not providers:
            return True
        if "Others" in providers:
            if organization not in (
                    ModelProvider.OPENAI.value, ModelProvider.COHERE.value, ModelProvider.VOYAGEAI.value):
                return True
        return organization in providers

    def filter_df(self, leaderboard: str, task: str, providers: List, sort_key: str):

        tasks = []
        for lb in self.leaderboards:
            if lb["name"] == leaderboard:
                tasks = lb["tasks"]
                break
        df_list = []
        for t in (filter(lambda x: x.upper() == task.upper(), tasks)):
            datasets = []
            for ta in self.tasks:
                if ta["slug"].upper() == t.upper():
                    datasets = ta["datasets"]
                    break
            for model in self.models:
                if t in model["tasks"] and self._check_providers(model["organization"], providers):

                    for dataset in datasets:
                        results = self.results[dataset]
                        for result in results:
                            if result['model_name'] == model["model_name"]:
                                d = result["results"]
                                d["class"] = result["class"]
                                d["organization"] = result["organization"]
                                d["model_name"] = result["model_name"]
                                df = pd.DataFrame([d])
                                df = df[["class", "organization", "model_name", "ndcg_at_1", "ndcg_at_3", "ndcg_at_5",
                                         "ndcg_at_10",
                                         "ndcg_at_20", "ndcg_at_50", "ndcg_at_100", "recall_at_1", "recall_at_3",
                                         "recall_at_5", "recall_at_10",
                                         "recall_at_20", "recall_at_50", "recall_at_100", "precision_at_1",
                                         "precision_at_3", "precision_at_5",
                                         "precision_at_10", "precision_at_20", "precision_at_50", "precision_at_100"]]
                                df_list.append(df)
            if df_list:
                return pd.concat(df_list).sort_values(by=sort_key.replace("@", '_at_').lower())
            return pd.DataFrame(columns=["class", "organization", "model_name", "ndcg_at_1", "ndcg_at_3", "ndcg_at_5",
                                         "ndcg_at_10",
                                         "ndcg_at_20", "ndcg_at_50", "ndcg_at_100", "recall_at_1", "recall_at_3",
                                         "recall_at_5", "recall_at_10",
                                         "recall_at_20", "recall_at_50", "recall_at_100", "precision_at_1",
                                         "precision_at_3", "precision_at_5",
                                         "precision_at_10", "precision_at_20", "precision_at_50", "precision_at_100"])

    def get_model_result(self, model: dict, task_datasets_map: dict, results: dict):
        """
        get_model_result
        """
        model_class = model["class"]
        model_organization = model["organization"]
        model_model_name = model["model_name"]
        for leaderboard in model["leaderboards"]:
            for task in model["tasks"]:
                for dateset in task_datasets_map.get(task, []):
                    for result in results[dateset]:
                        if result["model_name"] == model_model_name:
                            d_result = result["results"]
                            d_result["class"] = model_class
                            d_result["organization"] = model_organization
                            d_result["model_name"] = model_model_name
                            d_result["leaderboard"] = leaderboard
                            d_result["dateset"] = dateset
                            d_result["task"] = task
                            yield d_result

    def jsons_to_df(self):

        # change leaderboards to task_leaderboard_map
        task_leaderboard_map = {}
        leaderboards = self.leaderboards
        for leaderboard in leaderboards:
            for task in leaderboard["tasks"]:
                task_leaderboard_map[task] = leaderboard["name"]

        # change tasks to task_datasets_map
        task_datasets_map = {}
        for task in self.tasks:
            task_datasets_map[task["slug"]] = task["datasets"]

        df_results_list = []
        results = self.results
        for model in self.models:
            for d_result in self.get_model_result(model, task_datasets_map, results):
                if d_result:
                    df_results_list.append(pd.DataFrame([d_result]))

        if df_results_list:
            df_result = pd.concat(df_results_list)
            return df_result[
                ["leaderboard", "task", "class", "organization", "model_name", "dateset", "ndcg_at_1", "ndcg_at_3",
                 "ndcg_at_5",
                 "ndcg_at_10",
                 "ndcg_at_20", "ndcg_at_50", "ndcg_at_100", "recall_at_1", "recall_at_3",
                 "recall_at_5", "recall_at_10",
                 "recall_at_20", "recall_at_50", "recall_at_100", "precision_at_1",
                 "precision_at_3", "precision_at_5",
                 "precision_at_10", "precision_at_20", "precision_at_50", "precision_at_100"]], leaderboards
        return pd.DataFrame(
            columns=["leaderboard", "task", "class", "organization", "model_name", "dateset", "ndcg_at_1", "ndcg_at_3",
                     "ndcg_at_5",
                     "ndcg_at_10",
                     "ndcg_at_20", "ndcg_at_50", "ndcg_at_100", "recall_at_1", "recall_at_3",
                     "recall_at_5", "recall_at_10",
                     "recall_at_20", "recall_at_50", "recall_at_100", "precision_at_1",
                     "precision_at_3", "precision_at_5",
                     "precision_at_10", "precision_at_20", "precision_at_50", "precision_at_100"]), leaderboards

    def filter_by_providers(self, df_result: pd.DataFrame, providers: List):
        """
        filter_by_providers
        """
        if not providers:
            # providers are empty, return empty
            return df_result[0:0]
        return df_result[df_result['organization'].apply(lambda x: self._check_providers(x, providers))]

    def summarize_dataframe(self):
        """
        Summarize data statistics
        """