File size: 6,512 Bytes
0cc0a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365aab1
0cc0a55
 
 
 
 
 
63825b4
0cc0a55
 
 
 
365aab1
0cc0a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63825b4
 
0cc0a55
 
 
 
63825b4
0cc0a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63825b4
 
 
495ed17
 
63825b4
0cc0a55
 
 
 
 
63825b4
 
 
 
0cc0a55
 
 
 
 
 
 
 
 
 
 
63825b4
0cc0a55
 
 
 
 
 
63825b4
 
 
0cc0a55
 
 
 
 
 
 
 
 
 
 
 
 
 
63825b4
 
 
 
 
0cc0a55
 
 
 
 
 
 
 
 
 
 
495ed17
 
 
63825b4
 
0cc0a55
 
 
 
 
 
 
 
63825b4
0cc0a55
 
 
 
63825b4
0cc0a55
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import pandas as pd
import gradio as gr
from collections import OrderedDict
import logging
import tempfile
import os
from huggingface_hub import (
    HfApi,
    hf_hub_download,
    get_safetensors_metadata,
    metadata_load,
)

from utils.misc import human_format, make_clickable_model

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


EXCLUDED_MODELS = []  # For models that misbehave :)

K_EVALUATIONS = [1, 5, 10, 20, 50]
DIST_EVALUATIONS = [1_000_000, 500_000, 100_000, 10_000]

EXPECTED_KEY_TO_COLNAME = OrderedDict(
    [
        ("rank", "Rank"),  # Just for columns order
        ("model", "Model"),  # Just for columns order
        ("model_size", "Model Size (Million)"),  # Just for columns order
        ("conditioning", "Conditioning"),
        ("embedding_dim", "Embedding Dimension"),
    ]
    + [
        (f"recall_at_{K}|{D}", f"R@{K} +{human_format(D)} Dist.")
        for D in DIST_EVALUATIONS
        for K in K_EVALUATIONS
    ]
    + [
        ("n_dists", "Available Dists"),
    ],
)


def get_safetensors_nparams(modelId):
    try:
        safetensors = get_safetensors_metadata(modelId)
        num_parameters = sum(safetensors.parameter_count.values())
        return round(num_parameters / 1e6)
    except Exception:
        pass


def parse_model(m):
    readme_path = hf_hub_download(m.modelId, filename="README.md")
    meta = metadata_load(readme_path)

    if "model-index" not in meta:
        raise ValueError("Missing `model-index` in metadata")

    for result in meta["model-index"][0]["results"]:
        if result["dataset"]["type"] == "Slep/LAION-RVS-Fashion":
            break  # Found the right dataset

    # Get data from model-index / safetensors metadata
    d = {
        EXPECTED_KEY_TO_COLNAME["model"]: make_clickable_model(m.modelId),
        EXPECTED_KEY_TO_COLNAME["model_size"]: get_safetensors_nparams(m.modelId),
    }

    # Get data from exported results
    for metric in result["metrics"]:
        t = metric["type"]

        if t in EXPECTED_KEY_TO_COLNAME:
            d[EXPECTED_KEY_TO_COLNAME[t]] = metric["value"]

    return d


def get_data_from_hub():
    api = HfApi()
    models = api.list_models(filter="lrvsf-benchmark")

    df_list = []
    for m in models:
        if m.modelId in EXCLUDED_MODELS:
            continue

        try:
            parsed = parse_model(m)
            if parsed:
                df_list.append(parsed)
        except Exception as e:
            logging.warning(f"Failed to parse model {m.modelId} : {e}")

    return pd.DataFrame(df_list, columns=EXPECTED_KEY_TO_COLNAME.values())


def filter_dataframe(df, k_filter, d_filter, c_filter):
    # ===== FILTER COLUMNS
    # Fixed column positions
    selected_columns = [
        EXPECTED_KEY_TO_COLNAME["rank"],
        EXPECTED_KEY_TO_COLNAME["model"],
        EXPECTED_KEY_TO_COLNAME["conditioning"],
        EXPECTED_KEY_TO_COLNAME["model_size"],
        EXPECTED_KEY_TO_COLNAME["embedding_dim"],
    ]

    datatypes = ["number", "markdown", "number", "number"]

    for key, name in EXPECTED_KEY_TO_COLNAME.items():
        if name in selected_columns:
            # Already added, probably part of the initial columns
            continue

        if key.startswith("recall_at_"):
            # Process : recall_at_K|D -> recall_at_K , D -> K , D
            # Could be a regex... but simple enough
            recall_at_K, D = key.split("|")
            K = recall_at_K.split("_")[-1]

            if int(K) in k_filter and int(D) in d_filter:
                selected_columns.append(name)
                datatypes.append("str")  # Because of the ± std

    selected_columns.append(EXPECTED_KEY_TO_COLNAME["n_dists"])
    datatypes.append("number")

    df = df[selected_columns]

    # ===== FILTER ROWS
    if c_filter != "all":
        df = df[df[EXPECTED_KEY_TO_COLNAME["conditioning"]] == c_filter]

    return df[selected_columns], datatypes


def add_rank(df):
    main_metrics = df["R@1 +1M Dist."].str.split("±").str[0].astype(float)

    # Argsort is smallest to largest so we reverse it
    # We add 1 to start the rank at 1 instead of 0
    df["Rank"] = main_metrics.argsort().values[::-1] + 1
    return df


def save_current_leaderboard(df):
    filename = tempfile.NamedTemporaryFile(
        prefix="lrvsf_export_", suffix=".csv", delete=False
    ).name
    df.to_csv(filename, index=False)
    return filename


def load_lrvsf_models(k_filter, d_filter, c_filter, csv_file):
    # Remove previous tmpfile
    if csv_file:
        os.remove(csv_file)

    df = get_data_from_hub()
    df = add_rank(df)
    df, datatypes = filter_dataframe(df, k_filter, d_filter, c_filter)
    df = df.sort_values(by="Rank")

    filename = save_current_leaderboard(df)

    outputs = [
        gr.DataFrame(value=df, datatype=datatypes),
        gr.File(filename, label="CSV File"),
    ]

    return outputs


if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.Markdown(
            """
                # LAION - Referred Visual Search - Fashion 👗 Leaderboard

                - To submit, refer to the [LAION-RVS-Fashion Benchmark repository](https://github.com/Simon-Lepage/LRVSF-Benchmark).
                - For details on the task and the dataset, refer to the [LRVSF paper](https://arxiv.org/abs/2306.02928).
                - To download the leaderboard as CSV, click on the file below the table.
            """
        )
        with gr.Row():
            k_filter = gr.CheckboxGroup(
                choices=K_EVALUATIONS, value=K_EVALUATIONS, label="Recall at K"
            )
            d_filter = gr.CheckboxGroup(
                choices=[(human_format(D), D) for D in DIST_EVALUATIONS],
                value=DIST_EVALUATIONS,
                label="Number of Distractors",
            )
            c_filter = gr.Radio(
                choices=["all", "category", "text"],
                value="all",
                label="Conditioning",
            )

        df_table = gr.Dataframe(type="pandas", interactive=False)
        csv_file = gr.File(interactive=False)
        refresh = gr.Button("Refresh")

        # Actions
        refresh.click(
            load_lrvsf_models,
            inputs=[k_filter, d_filter, c_filter, csv_file],
            outputs=[df_table, csv_file],
        )
        demo.load(
            load_lrvsf_models,
            inputs=[k_filter, d_filter, c_filter, csv_file],
            outputs=[df_table, csv_file],
        )

    demo.launch()