Spaces:
Runtime error
Runtime error
File size: 6,512 Bytes
0cc0a55 365aab1 0cc0a55 63825b4 0cc0a55 365aab1 0cc0a55 63825b4 0cc0a55 63825b4 0cc0a55 63825b4 495ed17 63825b4 0cc0a55 63825b4 0cc0a55 63825b4 0cc0a55 63825b4 0cc0a55 63825b4 0cc0a55 495ed17 63825b4 0cc0a55 63825b4 0cc0a55 63825b4 0cc0a55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import pandas as pd
import gradio as gr
from collections import OrderedDict
import logging
import tempfile
import os
from huggingface_hub import (
HfApi,
hf_hub_download,
get_safetensors_metadata,
metadata_load,
)
from utils.misc import human_format, make_clickable_model
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
EXCLUDED_MODELS = [] # For models that misbehave :)
K_EVALUATIONS = [1, 5, 10, 20, 50]
DIST_EVALUATIONS = [1_000_000, 500_000, 100_000, 10_000]
EXPECTED_KEY_TO_COLNAME = OrderedDict(
[
("rank", "Rank"), # Just for columns order
("model", "Model"), # Just for columns order
("model_size", "Model Size (Million)"), # Just for columns order
("conditioning", "Conditioning"),
("embedding_dim", "Embedding Dimension"),
]
+ [
(f"recall_at_{K}|{D}", f"R@{K} +{human_format(D)} Dist.")
for D in DIST_EVALUATIONS
for K in K_EVALUATIONS
]
+ [
("n_dists", "Available Dists"),
],
)
def get_safetensors_nparams(modelId):
try:
safetensors = get_safetensors_metadata(modelId)
num_parameters = sum(safetensors.parameter_count.values())
return round(num_parameters / 1e6)
except Exception:
pass
def parse_model(m):
readme_path = hf_hub_download(m.modelId, filename="README.md")
meta = metadata_load(readme_path)
if "model-index" not in meta:
raise ValueError("Missing `model-index` in metadata")
for result in meta["model-index"][0]["results"]:
if result["dataset"]["type"] == "Slep/LAION-RVS-Fashion":
break # Found the right dataset
# Get data from model-index / safetensors metadata
d = {
EXPECTED_KEY_TO_COLNAME["model"]: make_clickable_model(m.modelId),
EXPECTED_KEY_TO_COLNAME["model_size"]: get_safetensors_nparams(m.modelId),
}
# Get data from exported results
for metric in result["metrics"]:
t = metric["type"]
if t in EXPECTED_KEY_TO_COLNAME:
d[EXPECTED_KEY_TO_COLNAME[t]] = metric["value"]
return d
def get_data_from_hub():
api = HfApi()
models = api.list_models(filter="lrvsf-benchmark")
df_list = []
for m in models:
if m.modelId in EXCLUDED_MODELS:
continue
try:
parsed = parse_model(m)
if parsed:
df_list.append(parsed)
except Exception as e:
logging.warning(f"Failed to parse model {m.modelId} : {e}")
return pd.DataFrame(df_list, columns=EXPECTED_KEY_TO_COLNAME.values())
def filter_dataframe(df, k_filter, d_filter, c_filter):
# ===== FILTER COLUMNS
# Fixed column positions
selected_columns = [
EXPECTED_KEY_TO_COLNAME["rank"],
EXPECTED_KEY_TO_COLNAME["model"],
EXPECTED_KEY_TO_COLNAME["conditioning"],
EXPECTED_KEY_TO_COLNAME["model_size"],
EXPECTED_KEY_TO_COLNAME["embedding_dim"],
]
datatypes = ["number", "markdown", "number", "number"]
for key, name in EXPECTED_KEY_TO_COLNAME.items():
if name in selected_columns:
# Already added, probably part of the initial columns
continue
if key.startswith("recall_at_"):
# Process : recall_at_K|D -> recall_at_K , D -> K , D
# Could be a regex... but simple enough
recall_at_K, D = key.split("|")
K = recall_at_K.split("_")[-1]
if int(K) in k_filter and int(D) in d_filter:
selected_columns.append(name)
datatypes.append("str") # Because of the ± std
selected_columns.append(EXPECTED_KEY_TO_COLNAME["n_dists"])
datatypes.append("number")
df = df[selected_columns]
# ===== FILTER ROWS
if c_filter != "all":
df = df[df[EXPECTED_KEY_TO_COLNAME["conditioning"]] == c_filter]
return df[selected_columns], datatypes
def add_rank(df):
main_metrics = df["R@1 +1M Dist."].str.split("±").str[0].astype(float)
# Argsort is smallest to largest so we reverse it
# We add 1 to start the rank at 1 instead of 0
df["Rank"] = main_metrics.argsort().values[::-1] + 1
return df
def save_current_leaderboard(df):
filename = tempfile.NamedTemporaryFile(
prefix="lrvsf_export_", suffix=".csv", delete=False
).name
df.to_csv(filename, index=False)
return filename
def load_lrvsf_models(k_filter, d_filter, c_filter, csv_file):
# Remove previous tmpfile
if csv_file:
os.remove(csv_file)
df = get_data_from_hub()
df = add_rank(df)
df, datatypes = filter_dataframe(df, k_filter, d_filter, c_filter)
df = df.sort_values(by="Rank")
filename = save_current_leaderboard(df)
outputs = [
gr.DataFrame(value=df, datatype=datatypes),
gr.File(filename, label="CSV File"),
]
return outputs
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown(
"""
# LAION - Referred Visual Search - Fashion 👗 Leaderboard
- To submit, refer to the [LAION-RVS-Fashion Benchmark repository](https://github.com/Simon-Lepage/LRVSF-Benchmark).
- For details on the task and the dataset, refer to the [LRVSF paper](https://arxiv.org/abs/2306.02928).
- To download the leaderboard as CSV, click on the file below the table.
"""
)
with gr.Row():
k_filter = gr.CheckboxGroup(
choices=K_EVALUATIONS, value=K_EVALUATIONS, label="Recall at K"
)
d_filter = gr.CheckboxGroup(
choices=[(human_format(D), D) for D in DIST_EVALUATIONS],
value=DIST_EVALUATIONS,
label="Number of Distractors",
)
c_filter = gr.Radio(
choices=["all", "category", "text"],
value="all",
label="Conditioning",
)
df_table = gr.Dataframe(type="pandas", interactive=False)
csv_file = gr.File(interactive=False)
refresh = gr.Button("Refresh")
# Actions
refresh.click(
load_lrvsf_models,
inputs=[k_filter, d_filter, c_filter, csv_file],
outputs=[df_table, csv_file],
)
demo.load(
load_lrvsf_models,
inputs=[k_filter, d_filter, c_filter, csv_file],
outputs=[df_table, csv_file],
)
demo.launch()
|