Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,301 Bytes
868e837 85d85cc 868e837 3bbbb72 868e837 934e594 868e837 934e594 868e837 123f0b6 868e837 123f0b6 868e837 3bbbb72 868e837 123f0b6 003d737 868e837 3bbbb72 868e837 3bbbb72 868e837 3bbbb72 868e837 85d85cc 868e837 85d85cc 868e837 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
"""
Unified AI-Image & Deepfake Detector
===================================
β’ Combines a generic AI-image detector (Swin-V2 + SuSy) *and*
a deepfake-specialist face detector (Inception-ResNet V1).
β’ Always runs both experts β fuses their calibrated scores.
β’ Works on images **and** short videos (β€ 30 s).
Add/keep in requirements.txt (versions pinned earlier):
torch torchvision facenet-pytorch transformers torchcam captum timm
mediapipe opencv-python-headless pillow scikit-image matplotlib
gradio fpdf pandas numpy absl-py ttach
"""
# βββββββββββββββββββββ bootstrap for extra wheels ββββββββββββββββββββββ
import os, uuid, warnings, math, tempfile
from pathlib import Path
from typing import List, Tuple
warnings.filterwarnings("ignore")
def _ensure_deps():
try:
import mediapipe, fpdf # noqa: F401
except ImportError:
os.system("pip install --quiet --upgrade mediapipe fpdf")
_ensure_deps()
# βββββββββββββββββββββββββββββββ imports βββββββββββββββββββββββββββββββ
import cv2
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from fpdf import FPDF
import mediapipe as mp
from facenet_pytorch import InceptionResnetV1, MTCNN
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from torchvision import transforms
from transformers import AutoImageProcessor, AutoModelForImageClassification
from torchcam.methods import GradCAM as TCGradCAM
from captum.attr import Saliency
from skimage.feature import graycomatrix, graycoprops
import matplotlib.pyplot as plt
import pandas as pd
import spaces
# βββββββββββββββββββββββββ runtime / models ββββββββββββββββββββββββββββ
plt.set_loglevel("ERROR")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Deep-fake specialist
_face_det = MTCNN(select_largest=False, post_process=False, device=device).eval().to(device)
_df_model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=device)
_df_model.load_state_dict(torch.load("resnet_inception.pth", map_location="cpu")["model_state_dict"])
_df_model.to(device).eval()
_df_cam = GradCAM(_df_model, target_layers=[_df_model.block8.branch1[-1]],
use_cuda=device.type == "cuda")
# Helper: robust layer fetch
def _get_layer(model, name: str):
mods = dict(model.named_modules())
return mods.get(name) or next(m for n, m in mods.items() if n.endswith(name))
# Binary AI-image detector (Swin-V2)
BIN_ID = "haywoodsloan/ai-image-detector-deploy"
_bin_proc = AutoImageProcessor.from_pretrained(BIN_ID)
_bin_mod = AutoModelForImageClassification.from_pretrained(BIN_ID).to(device).eval()
_CAM_LAYER_BIN = "encoder.layers.3.blocks.1.layernorm_after"
_bin_cam = TCGradCAM(_bin_mod, target_layer=_get_layer(_bin_mod, _CAM_LAYER_BIN))
# Generator classifier (SuSy β ScriptModule β Captum only)
_susy_mod = torch.jit.load("SuSy.pt").to(device).eval()
_GEN_CLASSES = ["Stable Diffusion 1.x", "DALLΒ·E 3",
"MJ V5/V6", "Stable Diffusion XL", "MJ V1/V2"]
_PATCH, _TOP = 224, 5
_to_tensor = transforms.ToTensor()
_to_gray = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])
# βββββββββββββββ calibration placeholders (optional tune) ββββββββββββββ
_calib_df_slope, _calib_df_inter = 1.0, 0.0
_calib_ai_slope, _calib_ai_inter = 1.0, 0.0
# def _calibrate_df(p: float) -> float:
# def _calibrate_ai(p: float) -> float:
# return 1 / (1 + math.exp(-(_calib_ai_slope * (p + _calib_ai_inter))))
def _calibrate_df(p: float) -> float: # keep raw score for now
return p
def _calibrate_ai(p: float) -> float:
return p
# βββββββββββββββββββββββββββββ misc helpers ββββββββββββββββββββββββββββ
UNCERTAIN_GAP = 0.10
MIN_FRAMES, MAX_SAMPLES = 4, 20
def _extract_landmarks(rgb: np.ndarray) -> Tuple[np.ndarray, np.ndarray | None]:
mesh = mp.solutions.face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1)
res = mesh.process(rgb); mesh.close()
if not res.multi_face_landmarks:
return rgb, None
h, w, _ = rgb.shape
out = rgb.copy()
for lm in res.multi_face_landmarks[0].landmark:
cx, cy = int(lm.x * w), int(lm.y * h)
cv2.circle(out, (cx, cy), 1, (0, 255, 0), -1)
return out, None
def _overlay_cam(cam, base):
# ---- NEW: make sure 'cam' is a NumPy array on CPU ----
if torch.is_tensor(cam): # covers torchcam output
cam = cam.detach().cpu().numpy()
# ------------------------------------------------------
cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-6)
heat = Image.fromarray(
(plt.cm.jet(cam)[:, :, :3] * 255).astype(np.uint8)
).resize((base.shape[1], base.shape[0]), Image.BICUBIC)
return Image.blend(
Image.fromarray(base).convert("RGBA"),
heat.convert("RGBA"),
alpha=0.45,
)
def _render_pdf(title: str, verdict: str, conf: dict, pages: List[Image.Image]) -> str:
out = Path(f"/tmp/report_{uuid.uuid4().hex}.pdf")
pdf = FPDF(); pdf.set_auto_page_break(True, 15); pdf.add_page()
pdf.set_font("Helvetica", size=14); pdf.cell(0, 10, title, ln=True, align="C")
pdf.ln(4); pdf.set_font("Helvetica", size=12)
pdf.multi_cell(0, 6, f"Verdict: {verdict}\n"
f"Confidence -> Real {conf['real']:.3f} Fake {conf['fake']:.3f}")
for idx, img in enumerate(pages):
pdf.ln(4); pdf.set_font("Helvetica", size=11)
pdf.cell(0, 6, f"Figure {idx+1}", ln=True)
tmp = Path(tempfile.mktemp(suffix=".jpg"))
img.convert("RGB").save(tmp, format="JPEG") # β add .convert("RGB")
pdf.image(str(tmp), x=10, w=90)
tmp.unlink(missing_ok=True)
pdf.output(out)
return str(out)
# ββββββββββββββββββββββββββ SuSy helpers (saliency) ββββββββββββββββββββ
def _susy_cam(tensor: torch.Tensor, class_idx: int) -> np.ndarray:
sal = Saliency(_susy_mod)
grad = sal.attribute(tensor, target=class_idx).abs().mean(1, keepdim=True)
return grad.squeeze().detach().cpu().numpy()
@spaces.GPU
def _susy_predict(img: Image.Image):
w, h = img.size
npx, npy = max(1, w // _PATCH), max(1, h // _PATCH)
patches = np.zeros((npx * npy, _PATCH, _PATCH, 3), dtype=np.uint8)
for i in range(npx):
for j in range(npy):
x, y = i * _PATCH, j * _PATCH
patches[i*npy + j] = np.array(img.crop((x, y, x+_PATCH, y+_PATCH))
.resize((_PATCH, _PATCH)))
contrasts = []
for p in patches:
g = _to_gray(Image.fromarray(p)).squeeze(0).numpy()
glcm = graycomatrix(g, [5], [0], 256, symmetric=True, normed=True)
contrasts.append(graycoprops(glcm, "contrast")[0, 0])
idx = np.argsort(contrasts)[::-1][:_TOP]
tens = torch.from_numpy(patches[idx].transpose(0, 3, 1, 2)).float() / 255.0
with torch.no_grad():
probs = _susy_mod(tens.to(device)).softmax(-1).mean(0).cpu().numpy()[1:]
return dict(zip(_GEN_CLASSES, probs))
# βββββββββββββββββββββββββββββ fusion math βββββββββββββββββββββββββββββ
def _fuse(p_ai: float, p_df: float) -> float:
return 1 - (1 - p_ai) * (1 - p_df)
def _verdict(p: float) -> str:
return "uncertain" if abs(p - 0.5) <= UNCERTAIN_GAP else ("fake" if p > 0.5 else "real")
# βββββββββββββββββββββββββββ IMAGE PIPELINE ββββββββββββββββββββββββββββ
@spaces.GPU
def _predict_image(pil: Image.Image):
gallery: List[Image.Image] = []
# Deep-fake path
try:
face = _face_det(pil)
except Exception:
face = None
if face is not None:
ft = F.interpolate(face.unsqueeze(0), (256, 256), mode="bilinear",
align_corners=False).float() / 255.0
p_df_raw = torch.sigmoid(_df_model(ft.to(device))).item()
p_df = _calibrate_df(p_df_raw)
crop_np = (ft.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
cam_df = _df_cam(ft, [ClassifierOutputTarget(0)])[0]
gallery.append(_overlay_cam(cam_df, crop_np))
gallery.append(Image.fromarray(_extract_landmarks(
cv2.cvtColor(np.array(pil), cv2.COLOR_BGR2RGB))[0]))
else:
p_df = 0.5
# Binary AI model
inp_bin = _bin_proc(images=pil, return_tensors="pt").to(device)
logits = _bin_mod(**inp_bin).logits.softmax(-1)[0]
p_ai_raw = logits[0].item()
p_ai = _calibrate_ai(p_ai_raw)
winner_idx = 0 if p_ai_raw >= logits[1].item() else 1
inp_bin_h = {k: v.clone().detach().requires_grad_(True) for k, v in inp_bin.items()}
cam_bin = _bin_cam(winner_idx, scores=_bin_mod(**inp_bin_h).logits)[0]
gallery.append(_overlay_cam(cam_bin, np.array(pil)))
# Generator breakdown (SuSy) if AI
bar_plot = gr.update(visible=False)
if p_ai_raw > logits[1].item():
gen_probs = _susy_predict(pil)
bar_plot = gr.update(value=pd.DataFrame(gen_probs.items(), columns=["class", "prob"]),
visible=True)
susy_in = _to_tensor(pil.resize((224, 224))).unsqueeze(0).to(device)
g_idx = _susy_mod(susy_in)[0, 1:].argmax().item() + 1
cam_susy = _susy_cam(susy_in, g_idx)
gallery.append(_overlay_cam(cam_susy, np.array(pil)))
# Fusion
p_final = _fuse(p_ai, p_df)
verdict = _verdict(p_final)
conf = {"real": round(1-p_final, 4), "fake": round(p_final, 4)}
pdf = _render_pdf("Unified Detector", verdict, conf, gallery[:3])
return verdict, conf, gallery, bar_plot, pdf
# βββββββββββββββββββββββββββ VIDEO PIPELINE ββββββββββββββββββββββββββββ
def _sample_idx(n): # max 20 evenly spaced
return list(range(n)) if n <= MAX_SAMPLES else np.linspace(0, n-1, MAX_SAMPLES, dtype=int)
@spaces.GPU
def _predict_video(path: str):
cap = cv2.VideoCapture(path); total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 1
probs, frames = [], []
for i in _sample_idx(total):
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ok, frm = cap.read()
if not ok:
continue
pil = Image.fromarray(cv2.cvtColor(frm, cv2.COLOR_BGR2RGB))
verdict, conf, _, _, _ = _predict_image(pil)
probs.append(conf["fake"])
if len(frames) < MIN_FRAMES:
frames.append(Image.fromarray(frm))
cap.release()
if not probs:
blank = Image.new("RGB", (256, 256))
return "No frames analysed", {"real": 0, "fake": 0}, [blank]
p_final = float(np.mean(probs))
return _verdict(p_final), {"real": round(1-p_final, 4), "fake": round(p_final, 4)}, frames
# βββββββββββββββββββββββββββββββββ UI ββββββββββββββββββββββββββββββββββ
_css = "footer{visibility:hidden!important}.logo,#logo{display:none!important}"
with gr.Blocks(css=_css, title="Unified AI-Fake & Deepfake Detector") as demo:
gr.Markdown("""
## Unified AI-Fake & Deepfake Detector
Upload an **image** or a short **video**.
The app fuses two complementary models, then shows heat-maps & a PDF report.
""")
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
img_in = gr.Image(label="Upload image", type="pil")
btn_i = gr.Button("Analyze")
with gr.Column(scale=2):
txt_v = gr.Textbox(label="Verdict", interactive=False)
lbl_c = gr.Label(label="Confidence")
gal = gr.Gallery(label="Explanations", columns=3, height=320)
bar = gr.BarPlot(x="class", y="prob", title="Likely generator",
y_label="probability", visible=False)
pdf_f = gr.File(label="Download PDF report")
btn_i.click(_predict_image, img_in, [txt_v, lbl_c, gal, bar, pdf_f])
with gr.Tab("Video"):
with gr.Row():
with gr.Column(scale=1):
vid_in = gr.Video(label="Upload MP4/AVI", format="mp4")
btn_v = gr.Button("Analyze")
with gr.Column(scale=2):
txt_vv = gr.Textbox(label="Verdict", interactive=False)
lbl_cv = gr.Label(label="Confidence")
gal_v = gr.Gallery(label="Sample frames", columns=4, height=240)
btn_v.click(_predict_video, vid_in, [txt_vv, lbl_cv, gal_v])
demo.launch(share=True, show_api=False)
|