File size: 13,301 Bytes
868e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85d85cc
868e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bbbb72
868e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934e594
 
 
 
 
 
 
868e837
 
934e594
868e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123f0b6
 
 
 
 
 
868e837
123f0b6
 
 
 
 
 
 
 
 
868e837
 
 
 
 
 
 
3bbbb72
868e837
 
 
123f0b6
003d737
 
 
 
868e837
 
 
 
 
 
 
 
 
3bbbb72
868e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bbbb72
868e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bbbb72
868e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85d85cc
868e837
85d85cc
868e837
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""
Unified AI-Image & Deepfake Detector
===================================
β€’ Combines a generic AI-image detector (Swin-V2 + SuSy) *and*
  a deepfake-specialist face detector (Inception-ResNet V1).
β€’ Always runs both experts β†’ fuses their calibrated scores.
β€’ Works on images **and** short videos (≀ 30 s).
Add/keep in requirements.txt (versions pinned earlier):
torch torchvision facenet-pytorch transformers torchcam captum timm
mediapipe opencv-python-headless pillow scikit-image matplotlib
gradio fpdf pandas numpy absl-py ttach
"""

# ───────────────────── bootstrap for extra wheels ──────────────────────
import os, uuid, warnings, math, tempfile
from pathlib import Path
from typing import List, Tuple

warnings.filterwarnings("ignore")

def _ensure_deps():
    try:
        import mediapipe, fpdf  # noqa: F401
    except ImportError:
        os.system("pip install --quiet --upgrade mediapipe fpdf")

_ensure_deps()

# ─────────────────────────────── imports ───────────────────────────────
import cv2
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from fpdf import FPDF
import mediapipe as mp
from facenet_pytorch import InceptionResnetV1, MTCNN
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from torchvision import transforms
from transformers import AutoImageProcessor, AutoModelForImageClassification
from torchcam.methods import GradCAM as TCGradCAM
from captum.attr import Saliency
from skimage.feature import graycomatrix, graycoprops
import matplotlib.pyplot as plt
import pandas as pd
import spaces

# ───────────────────────── runtime / models ────────────────────────────
plt.set_loglevel("ERROR")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Deep-fake specialist
_face_det = MTCNN(select_largest=False, post_process=False, device=device).eval().to(device)
_df_model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=device)
_df_model.load_state_dict(torch.load("resnet_inception.pth", map_location="cpu")["model_state_dict"])
_df_model.to(device).eval()
_df_cam = GradCAM(_df_model, target_layers=[_df_model.block8.branch1[-1]],
                  use_cuda=device.type == "cuda")

# Helper: robust layer fetch
def _get_layer(model, name: str):
    mods = dict(model.named_modules())
    return mods.get(name) or next(m for n, m in mods.items() if n.endswith(name))

# Binary AI-image detector (Swin-V2)
BIN_ID = "haywoodsloan/ai-image-detector-deploy"
_bin_proc = AutoImageProcessor.from_pretrained(BIN_ID)
_bin_mod  = AutoModelForImageClassification.from_pretrained(BIN_ID).to(device).eval()
_CAM_LAYER_BIN = "encoder.layers.3.blocks.1.layernorm_after"
_bin_cam = TCGradCAM(_bin_mod, target_layer=_get_layer(_bin_mod, _CAM_LAYER_BIN))

# Generator classifier (SuSy β€” ScriptModule β†’ Captum only)
_susy_mod = torch.jit.load("SuSy.pt").to(device).eval()
_GEN_CLASSES = ["Stable Diffusion 1.x", "DALLΒ·E 3",
                "MJ V5/V6", "Stable Diffusion XL", "MJ V1/V2"]
_PATCH, _TOP = 224, 5
_to_tensor = transforms.ToTensor()
_to_gray   = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])

# ─────────────── calibration placeholders (optional tune) ──────────────
_calib_df_slope, _calib_df_inter = 1.0, 0.0
_calib_ai_slope, _calib_ai_inter = 1.0, 0.0

# def _calibrate_df(p: float) -> float:

# def _calibrate_ai(p: float) -> float:
#     return 1 / (1 + math.exp(-(_calib_ai_slope * (p + _calib_ai_inter))))

def _calibrate_df(p: float) -> float:   # keep raw score for now
    return p

def _calibrate_ai(p: float) -> float:
    return p

# ───────────────────────────── misc helpers ────────────────────────────
UNCERTAIN_GAP = 0.10
MIN_FRAMES, MAX_SAMPLES = 4, 20

def _extract_landmarks(rgb: np.ndarray) -> Tuple[np.ndarray, np.ndarray | None]:
    mesh = mp.solutions.face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1)
    res  = mesh.process(rgb); mesh.close()
    if not res.multi_face_landmarks:
        return rgb, None
    h, w, _ = rgb.shape
    out = rgb.copy()
    for lm in res.multi_face_landmarks[0].landmark:
        cx, cy = int(lm.x * w), int(lm.y * h)
        cv2.circle(out, (cx, cy), 1, (0, 255, 0), -1)
    return out, None

def _overlay_cam(cam, base):
    # ---- NEW: make sure 'cam' is a NumPy array on CPU ----
    if torch.is_tensor(cam):          # covers torchcam output
        cam = cam.detach().cpu().numpy()
    # ------------------------------------------------------

    cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-6)
    heat = Image.fromarray(
        (plt.cm.jet(cam)[:, :, :3] * 255).astype(np.uint8)
    ).resize((base.shape[1], base.shape[0]), Image.BICUBIC)

    return Image.blend(
        Image.fromarray(base).convert("RGBA"),
        heat.convert("RGBA"),
        alpha=0.45,
    )

def _render_pdf(title: str, verdict: str, conf: dict, pages: List[Image.Image]) -> str:
    out = Path(f"/tmp/report_{uuid.uuid4().hex}.pdf")
    pdf = FPDF(); pdf.set_auto_page_break(True, 15); pdf.add_page()
    pdf.set_font("Helvetica", size=14); pdf.cell(0, 10, title, ln=True, align="C")
    pdf.ln(4); pdf.set_font("Helvetica", size=12)
    pdf.multi_cell(0, 6, f"Verdict: {verdict}\n"
                         f"Confidence -> Real {conf['real']:.3f}  Fake {conf['fake']:.3f}")
    for idx, img in enumerate(pages):
        pdf.ln(4); pdf.set_font("Helvetica", size=11)
        pdf.cell(0, 6, f"Figure {idx+1}", ln=True)

        tmp = Path(tempfile.mktemp(suffix=".jpg"))
        img.convert("RGB").save(tmp, format="JPEG")   # ← add .convert("RGB")
        pdf.image(str(tmp), x=10, w=90)
        tmp.unlink(missing_ok=True)
    pdf.output(out)
    return str(out)

# ────────────────────────── SuSy helpers (saliency) ────────────────────
def _susy_cam(tensor: torch.Tensor, class_idx: int) -> np.ndarray:
    sal = Saliency(_susy_mod)
    grad = sal.attribute(tensor, target=class_idx).abs().mean(1, keepdim=True)
    return grad.squeeze().detach().cpu().numpy()

@spaces.GPU
def _susy_predict(img: Image.Image):
    w, h = img.size
    npx, npy = max(1, w // _PATCH), max(1, h // _PATCH)
    patches  = np.zeros((npx * npy, _PATCH, _PATCH, 3), dtype=np.uint8)
    for i in range(npx):
        for j in range(npy):
            x, y = i * _PATCH, j * _PATCH
            patches[i*npy + j] = np.array(img.crop((x, y, x+_PATCH, y+_PATCH))
                                              .resize((_PATCH, _PATCH)))
    contrasts = []
    for p in patches:
        g = _to_gray(Image.fromarray(p)).squeeze(0).numpy()
        glcm = graycomatrix(g, [5], [0], 256, symmetric=True, normed=True)
        contrasts.append(graycoprops(glcm, "contrast")[0, 0])
    idx   = np.argsort(contrasts)[::-1][:_TOP]
    tens  = torch.from_numpy(patches[idx].transpose(0, 3, 1, 2)).float() / 255.0
    with torch.no_grad():
        probs = _susy_mod(tens.to(device)).softmax(-1).mean(0).cpu().numpy()[1:]
    return dict(zip(_GEN_CLASSES, probs))

# ───────────────────────────── fusion math ─────────────────────────────
def _fuse(p_ai: float, p_df: float) -> float:
    return 1 - (1 - p_ai) * (1 - p_df)

def _verdict(p: float) -> str:
    return "uncertain" if abs(p - 0.5) <= UNCERTAIN_GAP else ("fake" if p > 0.5 else "real")

# ─────────────────────────── IMAGE PIPELINE ────────────────────────────
@spaces.GPU
def _predict_image(pil: Image.Image):
    gallery: List[Image.Image] = []

    # Deep-fake path
    try:
        face = _face_det(pil)
    except Exception:
        face = None
    if face is not None:
        ft = F.interpolate(face.unsqueeze(0), (256, 256), mode="bilinear",
                           align_corners=False).float() / 255.0
        p_df_raw = torch.sigmoid(_df_model(ft.to(device))).item()
        p_df = _calibrate_df(p_df_raw)
        crop_np = (ft.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
        cam_df  = _df_cam(ft, [ClassifierOutputTarget(0)])[0]
        gallery.append(_overlay_cam(cam_df, crop_np))
        gallery.append(Image.fromarray(_extract_landmarks(
            cv2.cvtColor(np.array(pil), cv2.COLOR_BGR2RGB))[0]))
    else:
        p_df = 0.5

    # Binary AI model
    inp_bin = _bin_proc(images=pil, return_tensors="pt").to(device)
    logits  = _bin_mod(**inp_bin).logits.softmax(-1)[0]
    p_ai_raw = logits[0].item()
    p_ai = _calibrate_ai(p_ai_raw)
    winner_idx = 0 if p_ai_raw >= logits[1].item() else 1
    inp_bin_h = {k: v.clone().detach().requires_grad_(True) for k, v in inp_bin.items()}
    cam_bin = _bin_cam(winner_idx, scores=_bin_mod(**inp_bin_h).logits)[0]
    gallery.append(_overlay_cam(cam_bin, np.array(pil)))

    # Generator breakdown (SuSy) if AI
    bar_plot = gr.update(visible=False)
    if p_ai_raw > logits[1].item():
        gen_probs = _susy_predict(pil)
        bar_plot  = gr.update(value=pd.DataFrame(gen_probs.items(), columns=["class", "prob"]),
                              visible=True)
        susy_in   = _to_tensor(pil.resize((224, 224))).unsqueeze(0).to(device)
        g_idx     = _susy_mod(susy_in)[0, 1:].argmax().item() + 1
        cam_susy  = _susy_cam(susy_in, g_idx)
        gallery.append(_overlay_cam(cam_susy, np.array(pil)))

    # Fusion
    p_final = _fuse(p_ai, p_df)
    verdict = _verdict(p_final)
    conf    = {"real": round(1-p_final, 4), "fake": round(p_final, 4)}
    pdf     = _render_pdf("Unified Detector", verdict, conf, gallery[:3])

    return verdict, conf, gallery, bar_plot, pdf

# ─────────────────────────── VIDEO PIPELINE ────────────────────────────
def _sample_idx(n):  # max 20 evenly spaced
    return list(range(n)) if n <= MAX_SAMPLES else np.linspace(0, n-1, MAX_SAMPLES, dtype=int)

@spaces.GPU
def _predict_video(path: str):
    cap = cv2.VideoCapture(path); total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 1
    probs, frames = [], []
    for i in _sample_idx(total):
        cap.set(cv2.CAP_PROP_POS_FRAMES, i)
        ok, frm = cap.read()
        if not ok:
            continue
        pil = Image.fromarray(cv2.cvtColor(frm, cv2.COLOR_BGR2RGB))
        verdict, conf, _, _, _ = _predict_image(pil)
        probs.append(conf["fake"])
        if len(frames) < MIN_FRAMES:
            frames.append(Image.fromarray(frm))
    cap.release()
    if not probs:
        blank = Image.new("RGB", (256, 256))
        return "No frames analysed", {"real": 0, "fake": 0}, [blank]

    p_final = float(np.mean(probs))
    return _verdict(p_final), {"real": round(1-p_final, 4), "fake": round(p_final, 4)}, frames

# ───────────────────────────────── UI ──────────────────────────────────
_css = "footer{visibility:hidden!important}.logo,#logo{display:none!important}"

with gr.Blocks(css=_css, title="Unified AI-Fake & Deepfake Detector") as demo:
    gr.Markdown("""
    ## Unified AI-Fake & Deepfake Detector  
    Upload an **image** or a short **video**.  
    The app fuses two complementary models, then shows heat-maps & a PDF report.
    """)

    with gr.Tab("Image"):
        with gr.Row():
            with gr.Column(scale=1):
                img_in = gr.Image(label="Upload image", type="pil")
                btn_i  = gr.Button("Analyze")
            with gr.Column(scale=2):
                txt_v  = gr.Textbox(label="Verdict", interactive=False)
                lbl_c  = gr.Label(label="Confidence")
        gal   = gr.Gallery(label="Explanations", columns=3, height=320)
        bar   = gr.BarPlot(x="class", y="prob", title="Likely generator",
                           y_label="probability", visible=False)
        pdf_f = gr.File(label="Download PDF report")

        btn_i.click(_predict_image, img_in, [txt_v, lbl_c, gal, bar, pdf_f])

    with gr.Tab("Video"):
        with gr.Row():
            with gr.Column(scale=1):
                vid_in = gr.Video(label="Upload MP4/AVI", format="mp4")
                btn_v  = gr.Button("Analyze")
            with gr.Column(scale=2):
                txt_vv = gr.Textbox(label="Verdict", interactive=False)
                lbl_cv = gr.Label(label="Confidence")
        gal_v = gr.Gallery(label="Sample frames", columns=4, height=240)

        btn_v.click(_predict_video, vid_in, [txt_vv, lbl_cv, gal_v])

demo.launch(share=True, show_api=False)