File size: 8,806 Bytes
039c47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import requests
import random
from io import BytesIO

from transformers import ViTForImageClassification, ViTImageProcessor
from lime import lime_image
from skimage.segmentation import slic, mark_boundaries

# Add logging
import logging, os
from logging.handlers import RotatingFileHandler
LOG_DIR = os.path.join(os.path.dirname(__file__), "logs")
os.makedirs(LOG_DIR, exist_ok=True)
logfile = os.path.join(LOG_DIR, "interp.log")
logger = logging.getLogger("vit_lime_uncertainty")
if not logger.handlers:
    logger.setLevel(logging.INFO)
    sh = logging.StreamHandler()
    fh = RotatingFileHandler(logfile, maxBytes=5_000_000, backupCount=3, encoding="utf-8")
    fmt = logging.Formatter("%(asctime)s %(levelname)s %(name)s: %(message)s")
    sh.setFormatter(fmt); fh.setFormatter(fmt)
    logger.addHandler(sh); logger.addHandler(fh)

# ---- Step 1: Load model & processor ----
model_name = "google/vit-base-patch16-224"
model = ViTForImageClassification.from_pretrained(model_name)
processor = ViTImageProcessor.from_pretrained(model_name)
model.eval()

# ---- Step 2: Robust random image downloader (multiple providers + fallback) ----
def download_random_image(size=(224, 224)):
    search_terms = ["dog", "cat", "bird", "car", "airplane", "horse", "elephant", "tiger", "lion", "bear"]
    term = random.choice(search_terms)
    providers = [
        f"https://source.unsplash.com/{size[0]}x{size[1]}/?{term}",
        f"https://picsum.photos/seed/{term}/{size[0]}/{size[1]}",
        f"https://loremflickr.com/{size[0]}/{size[1]}/{term}",
        f"https://placekitten.com/{size[0]}/{size[1]}"
    ]
    headers = {"User-Agent": "Mozilla/5.0 (compatible; ImageFetcher/1.0)"}
    for url in providers:
        try:
            r = requests.get(url, timeout=10, headers=headers, allow_redirects=True)
            if r.status_code != 200:
                logger.warning("Provider %s returned status %d", url, r.status_code)
                continue
            try:
                img = Image.open(BytesIO(r.content)).convert("RGB")
            except Exception as e:
                logger.warning("Failed to open image from %s: %s", url, e)
                continue
            try:
                img = img.resize(size, Image.Resampling.LANCZOS)
            except Exception:
                img = img.resize(size, Image.LANCZOS)
            logger.info("Downloaded image for '%s' from %s", term, url)
            return img
        except requests.RequestException as e:
            logger.warning("Request exception %s for %s", e, url)
            continue
    logger.error("All providers failed; using fallback solid-color image.")
    return Image.new("RGB", size, color=(128, 128, 128))

# ---- Step 3: Classifier function for LIME ----
def classifier_fn(images_batch):
    """
    images_batch: list or numpy array of images with shape (N, H, W, 3),
    values in [0,255] or uint8. Return numpy array (N, num_classes) of probabilities.
    """
    # transformer processor accepts numpy arrays directly
    if isinstance(images_batch, np.ndarray):
        imgs = [img.astype(np.uint8) for img in images_batch]
    else:
        imgs = images_batch
    inputs = processor(images=imgs, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        probs = torch.softmax(outputs.logits, dim=-1).cpu().numpy()
    return probs

# ---- Step 4: Run LIME multiple times to estimate uncertainty ----
def lime_explanations_with_uncertainty(img_pil, n_runs=6, num_samples=1000, segments_kwargs=None):
    if segments_kwargs is None:
        segments_kwargs = {"n_segments": 50, "compactness": 10}

    explainer = lime_image.LimeImageExplainer()
    img_np = np.array(img_pil)  # H,W,3 uint8

    run_maps = []
    for run in range(n_runs):
        logger.info("LIME run %d/%d (num_samples=%d)", run+1, n_runs, num_samples)
        # segmentation function to ensure reproducible-ish segments per run
        segmentation_fn = lambda x: slic(x, start_label=0, **segments_kwargs)

        explanation = explainer.explain_instance(
            img_np,
            classifier_fn=classifier_fn,
            top_labels=5,
            hide_color=0,
            num_samples=num_samples,
            segmentation_fn=segmentation_fn
        )

        preds = classifier_fn(np.expand_dims(img_np, 0))
        pred_label = int(preds[0].argmax())

        local_exp = dict(explanation.local_exp)[pred_label]
        segments = explanation.segments  # shape (H,W) of segment ids

        attr_map = np.zeros(segments.shape, dtype=float)
        for seg_id, weight in local_exp:
            attr_map[segments == seg_id] = weight

        run_maps.append(attr_map)
    runs_stack = np.stack(run_maps, axis=0)
    mean_attr = runs_stack.mean(axis=0)
    std_attr = runs_stack.std(axis=0)
    logger.info("Completed %d LIME runs, mean/std shapes: %s / %s", n_runs, mean_attr.shape, std_attr.shape)
    # compute segments once for overlay (use same segmentation kwargs)
    segments_final = slic(img_np, start_label=0, **segments_kwargs)
    return img_np, mean_attr, std_attr, segments_final, pred_label, preds.squeeze()

# ---- Step 5: Visualize results ----
def plot_mean_and_uncertainty(img_np, mean_attr, std_attr, segments, pred_label, probs, cmap_mean="jet", cmap_unc="hot"):
    # normalize for display (center mean at 0)
    def normalize(x):
        mn, mx = x.min(), x.max()
        return (x - mn) / (mx - mn + 1e-8)

    mean_norm = normalize(mean_attr)
    std_norm = normalize(std_attr)

    # show label + prob in title
    pred_name = model.config.id2label[int(pred_label)]
    pred_prob = float(probs[int(pred_label)])

    fig, axes = plt.subplots(2, 3, figsize=(15, 9))
    axes = axes.flatten()

    axes[0].imshow(img_np)
    axes[0].set_title("Original image")
    axes[0].axis("off")

    # overlay mean attribution with segment boundaries
    overlay = img_np.copy().astype(float) / 255.0
    axes[1].imshow(mark_boundaries(overlay, segments, color=(1,1,0)))
    im1 = axes[1].imshow(mean_norm, cmap=cmap_mean, alpha=0.5)
    axes[1].set_title(f"Mean attribution (overlay)\npred: {pred_name} ({pred_prob:.3f})")
    axes[1].axis("off")
    fig.colorbar(im1, ax=axes[1], fraction=0.046, pad=0.04)

    # uncertainty map and contour where std is high
    im2 = axes[2].imshow(std_norm, cmap=cmap_unc)
    axes[2].set_title("Uncertainty (std)")
    axes[2].axis("off")
    fig.colorbar(im2, ax=axes[2], fraction=0.046, pad=0.04)

    # histogram of mean attribution values
    axes[3].hist(mean_attr.ravel(), bins=50, color="C0")
    axes[3].set_title("Distribution of mean attribution")

    # histogram of uncertainty values
    axes[4].hist(std_attr.ravel(), bins=50, color="C1")
    axes[4].set_title("Distribution of attribution std (uncertainty)")

    # show uncertainty contour over image (high uncertainty regions)
    thresh = np.percentile(std_attr, 90)
    contour_mask = std_attr >= thresh
    axes[5].imshow(img_np)
    axes[5].imshow(np.ma.masked_where(~contour_mask, contour_mask), cmap="Reds", alpha=0.45)
    axes[5].set_title(f"Top-10% uncertainty (threshold={thresh:.3f})")
    axes[5].axis("off")

    plt.tight_layout()
    plt.show()

# ---- Main: run example ----
if __name__ == "__main__":
    logger.info("Script started")
    img = download_random_image()
    img_np, mean_attr, std_attr, segments, pred_label, probs = lime_explanations_with_uncertainty(
        img_pil=img,
        n_runs=6,          # increase for better uncertainty estimates (longer)
        num_samples=1000,  # LIME samples per run
        segments_kwargs={"n_segments": 60, "compactness": 9}
    )
    logger.info("Plotting results and finishing")
    plot_mean_and_uncertainty(img_np, mean_attr, std_attr, segments, pred_label, probs)

    # Add concise runtime interpretability guidance
    def print_interpretability_summary():
        print("\nHow to read the results (quick guide):")
        print("- LIME panel: green/highlighted superpixels are locally important for the predicted class; if background dominates, that's a red flag.")
        print("- LIME uncertainty (std): high std regions indicate unstable explanations across runs.")
        print("- MC Dropout histogram: narrow peak β†’ stable belief; wide/multi-modal β†’ epistemic uncertainty.")
        print("- TTA histogram: if small flips/crops cause big swings, prediction depends on fragile cues (aleatoric-ish sensitivity).")
        print("- Predictive entropy: higher means more uncertainty in the class distribution.")
        print("- Variation ratio: fraction of samples not in the majority class; higher β†’ more disagreement.\n")

    print_interpretability_summary()
    logger.info("Script finished")