File size: 4,522 Bytes
352b049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# This code is based on https://github.com/Mathux/ACTOR.git
import contextlib

import numpy as np
import torch
from smplx import SMPLLayer as _SMPLLayer
from smplx.lbs import vertices2joints

# action2motion_joints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 24, 38]
# change 0 and 8
action2motion_joints = [8, 1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 21, 24, 38]

# from utils.config import JOINT_REGRESSOR_TRAIN_EXTRA, SMPL_MODEL_PATH
import os

SMPL_DATA_PATH = "./body_models/smpl"

# SMPL_KINTREE_PATH = os.path.join(SMPL_DATA_PATH, "kintree_table.pkl")
SMPL_MODEL_PATH = os.path.join(SMPL_DATA_PATH, "SMPL_NEUTRAL.pkl")
JOINT_REGRESSOR_TRAIN_EXTRA = os.path.join(SMPL_DATA_PATH, "J_regressor_extra.npy")

# ROT_CONVENTION_TO_ROT_NUMBER = {
#     'legacy': 23,
#     'no_hands': 21,
#     'full_hands': 51,
#     'mitten_hands': 33,
# }

# GENDERS = ['neutral', 'male', 'female']
# NUM_BETAS = 10

JOINTSTYPE_ROOT = {
    "a2m": 0,  # action2motion
    "smpl": 0,
    "a2mpl": 0,  # set(smpl, a2m)
    "vibe": 8,
}  # 0 is the 8 position: OP MidHip below

JOINT_MAP = {
    "OP Nose": 24,
    "OP Neck": 12,
    "OP RShoulder": 17,
    "OP RElbow": 19,
    "OP RWrist": 21,
    "OP LShoulder": 16,
    "OP LElbow": 18,
    "OP LWrist": 20,
    "OP MidHip": 0,
    "OP RHip": 2,
    "OP RKnee": 5,
    "OP RAnkle": 8,
    "OP LHip": 1,
    "OP LKnee": 4,
    "OP LAnkle": 7,
    "OP REye": 25,
    "OP LEye": 26,
    "OP REar": 27,
    "OP LEar": 28,
    "OP LBigToe": 29,
    "OP LSmallToe": 30,
    "OP LHeel": 31,
    "OP RBigToe": 32,
    "OP RSmallToe": 33,
    "OP RHeel": 34,
    "Right Ankle": 8,
    "Right Knee": 5,
    "Right Hip": 45,
    "Left Hip": 46,
    "Left Knee": 4,
    "Left Ankle": 7,
    "Right Wrist": 21,
    "Right Elbow": 19,
    "Right Shoulder": 17,
    "Left Shoulder": 16,
    "Left Elbow": 18,
    "Left Wrist": 20,
    "Neck (LSP)": 47,
    "Top of Head (LSP)": 48,
    "Pelvis (MPII)": 49,
    "Thorax (MPII)": 50,
    "Spine (H36M)": 51,
    "Jaw (H36M)": 52,
    "Head (H36M)": 53,
    "Nose": 24,
    "Left Eye": 26,
    "Right Eye": 25,
    "Left Ear": 28,
    "Right Ear": 27,
}

JOINT_NAMES = [
    "OP Nose",
    "OP Neck",
    "OP RShoulder",
    "OP RElbow",
    "OP RWrist",
    "OP LShoulder",
    "OP LElbow",
    "OP LWrist",
    "OP MidHip",
    "OP RHip",
    "OP RKnee",
    "OP RAnkle",
    "OP LHip",
    "OP LKnee",
    "OP LAnkle",
    "OP REye",
    "OP LEye",
    "OP REar",
    "OP LEar",
    "OP LBigToe",
    "OP LSmallToe",
    "OP LHeel",
    "OP RBigToe",
    "OP RSmallToe",
    "OP RHeel",
    "Right Ankle",
    "Right Knee",
    "Right Hip",
    "Left Hip",
    "Left Knee",
    "Left Ankle",
    "Right Wrist",
    "Right Elbow",
    "Right Shoulder",
    "Left Shoulder",
    "Left Elbow",
    "Left Wrist",
    "Neck (LSP)",
    "Top of Head (LSP)",
    "Pelvis (MPII)",
    "Thorax (MPII)",
    "Spine (H36M)",
    "Jaw (H36M)",
    "Head (H36M)",
    "Nose",
    "Left Eye",
    "Right Eye",
    "Left Ear",
    "Right Ear",
]


# adapted from VIBE/SPIN to output smpl_joints, vibe joints and action2motion joints
class SMPL(_SMPLLayer):
    """Extension of the official SMPL implementation to support more joints"""

    def __init__(self, model_path=SMPL_MODEL_PATH, **kwargs):
        kwargs["model_path"] = model_path

        # remove the verbosity for the 10-shapes beta parameters
        with contextlib.redirect_stdout(None):
            super(SMPL, self).__init__(**kwargs)

        J_regressor_extra = np.load(JOINT_REGRESSOR_TRAIN_EXTRA)
        self.register_buffer(
            "J_regressor_extra", torch.tensor(J_regressor_extra, dtype=torch.float32)
        )
        vibe_indexes = np.array([JOINT_MAP[i] for i in JOINT_NAMES])
        a2m_indexes = vibe_indexes[action2motion_joints]
        smpl_indexes = np.arange(24)
        a2mpl_indexes = np.unique(np.r_[smpl_indexes, a2m_indexes])

        self.maps = {
            "vibe": vibe_indexes,
            "a2m": a2m_indexes,
            "smpl": smpl_indexes,
            "a2mpl": a2mpl_indexes,
        }

    def forward(self, *args, **kwargs):
        smpl_output = super(SMPL, self).forward(*args, **kwargs)

        extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)
        all_joints = torch.cat([smpl_output.joints, extra_joints], dim=1)

        output = {"vertices": smpl_output.vertices}

        for joinstype, indexes in self.maps.items():
            output[joinstype] = all_joints[:, indexes]

        return output