Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,982 Bytes
352b049 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
from vedo import Mesh, Points, Plotter, screenshot, Arrow, Light, Plane
import imageio
import os
import numpy as np
from scipy.interpolate import Rbf, NearestNDInterpolator as Near
import re
screenshot_scale = 3
cam = dict(
position=(-3.85922, -4.78140, 0.689328),
focal_point=(0.192544, 4.77379e-3, 0.0127248),
viewup=(0.0724348, 0.109097, 0.991388),
distance=5.25119,
clipping_range=(4.38228, 6.36775),
)
_red = [0.9, 0.1, 0.1]
_green= [0.4, 1.0, 0.8]
_blue =[0.7, 0.9, 1.0]
_dark_blue =[0.03, 0.4, 0.7]
def sort_list(l):
try:
return list(sorted(l, key=lambda x: int(re.search(r'\d+(?=\.)', x).group())))
except AttributeError:
return sorted(l)
def get_lights(light_color=[255, 255, 245], offset=[0, 0, 0], intensity_mult=1):
# Add light sources at the given positions
# (grab the position and color of the arrow object)
orig = np.array([0, 0, 0]) + np.array(offset)
phl = Arrow(np.array([0.1, 0.1, 10]) + offset, orig, c=light_color).scale(0.2)
pfl = Arrow(np.array([1.5, 0.1, 0.3]) + offset, orig, c=light_color).scale(0.2)
pbl = Arrow(np.array([-1.5, 0.1, 0.3]) + offset, orig, c=light_color).scale(0.2)
prl = Arrow(np.array([0.1, -1.5, 0.3]) + offset, orig, c=light_color).scale(0.2)
pll = Arrow(np.array([0.1, 1.5, 0.3]) + offset, orig, c=light_color).scale(0.2)
hl = Light(phl, intensity=0.7 * intensity_mult, angle=180, )
rl = Light(pfl, intensity=0.6 * intensity_mult, angle=180, )
ll = Light(pbl, intensity=0.6 * intensity_mult, angle=180, )
bl = Light(pll, intensity=0.6 * intensity_mult, angle=180, )
fl = Light(prl, intensity=1 * intensity_mult, angle=180, )
lights = [hl, fl, bl, ll, rl]
return lights
def get_mesh(mesh_name, mesh_opacity=1.0, mesh_lighting='default', rotation=[0, 0, 0], offset=[0, 0, 0], scale=0):
offset = np.array(offset)
#styles = ['default', 'metallic', 'plastic', 'shiny', 'glossy', 'ambient', 'off']
mesh = Mesh(mesh_name, c=_blue, alpha=mesh_opacity).lighting(mesh_lighting)
if scale == 0:
bnd = np.array(mesh.bounds())
scale = 1 / max(bnd[1]-bnd[0], bnd[3]-bnd[2], bnd[5]-bnd[4])
mesh.scale(scale)
mesh.pos(offset)
mesh.rotate_x(rotation[0])
mesh.rotate_y(rotation[1])
mesh.rotate_z(rotation[2])
# mesh.phong()
# mesh2.phong()
return mesh, scale
def get_ptc(ptc_name, rotation=[0, 0, 0], offset=[0, 0, 0], scale=0, color=_dark_blue):
offset = np.array(offset)
#styles = ['default', 'metallic', 'plastic', 'shiny', 'glossy', 'ambient', 'off']
mesh = Points(Mesh(ptc_name), r=1).c([0.5,0.5,0.5]).alpha(0.8)
if scale == 0:
bnd = np.array(mesh.bounds())
scale = 1 / max(bnd[1]-bnd[0], bnd[3]-bnd[2], bnd[5]-bnd[4])
mesh.scale(scale)
mesh.pos(offset)
mesh.rotate_x(rotation[0])
mesh.rotate_y(rotation[1])
mesh.rotate_z(rotation[2])
# mesh.phong()
# mesh2.phong()
return mesh, scale
def get_mesh_shadow(mesh, offset=[0, 0, 0], plane_normal=(0, 0, 1), direction=[0.1, -1.8, 3]):
shadow = []
shad_col = np.array([0.8, 0.8, 0.8])
min_z = mesh.points().min(axis=0)[2]
# mesh.add_shadow(plane='z', point=min_z, alpha=1, c=shad_col, culling=0.9,)
plane = Plane(pos=np.array([0, 0, min_z]) + np.array(offset), normal=plane_normal, s=[7, 7]).alpha(0.2)
shad = mesh.clone().project_on_plane(plane, direction=-np.array(direction) + np.array(offset))
shad.c(shad_col).alpha(1).lighting("off").use_bounds(False)
shadow = shad
return shadow
def create_visual(mesh_files, directory, x,y,z, type='mesh'):
meshes, scales =[], []
# plotter = Plotter(offscreen=True)
plotter = Plotter(bg=[255, 255, 255], offscreen=True)
frame_files = []
# lights = get_lights()
for file in mesh_files:
if type == 'mesh':
mesh, scale = get_mesh(file, rotation=[x,y,z], mesh_lighting='metallic')
else:
mesh, scale = get_ptc(file)
plotter.clear()
shadow = get_mesh_shadow(mesh)
# plotter.add([mesh, shadow])
plotter.show(mesh, shadow, __doc__, interactive=False, camera=cam, resetcam=True, zoom=2)
frame_path =file[:-4] + ".png"
frame_files.append(frame_path)
screenshot(frame_path, scale=1)
# Compile saved frames into a GIF
filename = os.path.join(directory, type+'_animation.gif')
with imageio.get_writer(filename, mode='I', duration=0.2) as writer:
for filename in frame_files:
image = imageio.imread(filename)
writer.append_data(image)
def create_mesh_animation(mesh_files, directory, x,y,z):
# Load all meshes
meshes = [Mesh(f) for f in mesh_files]
# Create a plotter
plotter = Plotter(bg=[255, 255, 255], offscreen=True)
# plotter = vedo.Plotter()# Use offscreen rendering to save frames
frame_files = [] # To store the path of each frame image
# plotter.camera.SetViewUp(0,0,1)
# shadow = mesh.clone().projectOnPlane(direction=(0,0,-1))
# Color the shadow mesh dark and make it slightly transparent
for frame_id, mesh in enumerate(meshes):
mesh.rotate_x(x).rotate_y(y).rotate_z(z).lighting('metallic')
shadow = get_mesh_shadow(mesh)
scalars = 1- mesh.vertices[:, 2]
mesh.cmap('Blues', scalars)
# mesh.add_shadow('x', 0.95)
plotter.clear()
# plotter.add(mesh)
plotter.show(mesh, shadow, __doc__, interactive=False, camera=cam, resetcam=True, zoom=2)
frame_path = mesh_files[frame_id][:-4] + ".png"
frame_files.append(frame_path)
screenshot(frame_path, scale=1) # Save frame as image
#crop the images
# os.system("""convert -trim {0} "{1}" """.format(frame_path, frame_path))
# Compile saved frames into a GIF
filename = os.path.join(directory, 'mesh_animation.gif')
with imageio.get_writer(filename, mode='I', duration=0.2) as writer:
for f in frame_files:
image = imageio.imread(f)
writer.append_data(image)
os.system("""convert -trim {0} "{1}" """.format(f, f))
def create_point_cloud_animation(files, directory, x,y,z):
# Load all meshes
meshes = [Points(Mesh(f), r=1) for f in files]
# Create a plotter
plotter = Plotter(bg=[255, 255, 255], offscreen=True)
# plotter = vedo.Plotter()# Use offscreen rendering to save frames
frame_files = [] # To store the path of each frame image
# plotter.camera.SetViewUp(0,0,1)
# shadow = mesh.clone().projectOnPlane(direction=(0,0,-1))
# Color the shadow mesh dark and make it slightly transparent
for frame_id, mesh in enumerate(meshes):
mesh.rotate_x(x).rotate_y(y).rotate_z(z).c([0.5,0.5,0.5])
shadow = get_mesh_shadow(mesh)
# scalars = 1- mesh.vertices[:, 2]
# mesh.cmap('binary', scalars)
plotter.clear()
plotter.show(mesh, shadow, __doc__, interactive=False, camera=cam, resetcam=True, zoom=2)
frame_path = files[frame_id][:-4] + ".png"
frame_files.append(frame_path)
screenshot(frame_path, scale=1) # Save frame as image
#crop the images
# os.system("""convert -trim {0} "{1}" """.format(frame_path, frame_path))
# Compile saved frames into a GIF
filename = os.path.join(directory, 'pct_animation.gif')
with imageio.get_writer(filename, mode='I', duration=0.2) as writer:
for f in frame_files:
image = imageio.imread(f)
writer.append_data(image)
os.system("""convert -trim {0} "{1}" """.format(f, f))
def point_cloud_colormap(gt_ptc, ptc, corr_num):
s1, _ = get_ptc(gt_ptc, color=_red)
s2, _ = get_ptc(ptc, color=_blue)
landmarks1 = s1.vertices[:corr_num,:]
landmarks2 = s2.vertices[:corr_num,:]
x, y, z = np.split(landmarks1, 3, axis=1)
desc = x**2 + y**2 + z**2
# itr = Rbf(x, y, z, desc) # Radial Basis Function interpolator
itr = Near(landmarks1, desc) # Nearest-neighbour interpolator
# interpolate descriptor on the full set of mesh vertices
xi, yi, zi = np.split(s2.vertices, 3, axis=1)
interpolated_desc = itr(xi, yi, zi)
s2.cmap('coolwarm', interpolated_desc.squeeze()).add_scalarbar(title='error')
# s2.point_colors(interpolated_desc, cmap='coolwarm', vmin=min(interpolated_desc), vmax=max(interpolated_desc)).addScalarBar(title='$\error$')
plotter = Plotter()
plotter.show(s2, __doc__, axes=True)
def mesh_colormap(gt_mesh, mesh, corr_num):
s1, _ = get_ptc(gt_ptc, color=_red)
s2, _ = get_ptc(ptc, color=_blue)
landmarks1 = s1.vertices[:corr_num,:]
landmarks2 = s2.vertices[:corr_num,:]
x, y, z = np.split(landmarks1, 3, axis=1)
desc = x**2 + y**2 + z**2
# itr = Rbf(x, y, z, desc) # Radial Basis Function interpolator
itr = Near(landmarks1, desc) # Nearest-neighbour interpolator
# interpolate descriptor on the full set of mesh vertices
xi, yi, zi = np.split(s2.vertices, 3, axis=1)
interpolated_desc = itr(xi, yi, zi)
s2.cmap('coolwarm', interpolated_desc.squeeze()).add_scalarbar(title='error')
# s2.point_colors(interpolated_desc, cmap='coolwarm', vmin=min(interpolated_desc), vmax=max(interpolated_desc)).addScalarBar(title='$\error$')
plotter = Plotter()
plotter.show(s2, __doc__, axes=True)
def plot_two_mesh(meshfile1, meshfile2, x,y,z):
plotter = Plotter(bg=[255, 255, 255], offscreen=True)
mesh1, scale = get_ptc(meshfile1, rotation=[x,y,z])
mesh1.alpha(1.0).c([0.2,0.2,0.2])
# scalars = 1- mesh1.vertices[:, 2]
# mesh1.cmap('Oranges', scalars)
# mesh1.c(_dark_blue)
mesh2, scale = get_mesh(meshfile2, rotation=[x,y,z], mesh_lighting='shiny')
scalars = 1- mesh2.vertices[:, 2]
mesh2.cmap('Blues', scalars)
plotter.show(mesh1, mesh2, __doc__, interactive=False, camera=cam, resetcam=True, zoom=2)
frame_path =meshfile2[:-4] + ".png"
screenshot(frame_path, scale=1)
os.system("""convert -trim {0} "{1}" """.format(frame_path, frame_path))
if __name__ == "__main__":
folder = '/home/wiss/sang/git/implicit_neuro_morph/jax_implicit_neuro_morph/exp/smal/2024_04_18_15_11_59/reconstructions'
prefix = 'shape_0_to_4000_'
# filenames = [os.path.join(folder, prefix + str(i) + '_mesh.ply') for i in range(0,11)]
# create_mesh_animation(filenames, folder, -45, -45, 90)
# filenames = [os.path.join(folder, prefix + str(i) + '_ptc.ply') for i in range(0,11)]
# gt_ptc = os.path.join(folder, prefix + 'gt_pointcloud_y.ply')
# ptc = os.path.join(folder, prefix + 'epoch_10000_time_10_ptc.ply')
# create_point_cloud_animation(filenames, folder, -45, -45, 90)
folder = '/home/wiss/sang/git/implicit_neuro_morph/jax_implicit_neuro_morph/exp/smal/2024_04_18_15_11_59/eval'
# mesh_files = [os.path.join(folder, f) for f in os.listdir(folder) if f.endswith('mesh.ply')]
# mesh_files = sort_list(mesh_files)
# create_visual(mesh_files, folder, 0,0,-90, type='mesh')
# create_mesh_animation(mesh_files, folder, 0,0, -90)
# folder = '/home/wiss/sang/git/implicit_neuro_morph/jax_implicit_neuro_morph/exp/fraust_r/2024_04_22_14_01_05/eval'
# mesh_files = [os.path.join(folder, f) for f in os.listdir(folder) if f.endswith('ptc.ply')]
# mesh_files = sort_list(mesh_files)
# create_point_cloud_animation(mesh_files, folder, 0,0,-90)
prefix = 'shape_0_to_4000_'
mesh1 = 'gt_pointcloud_y.ply'
mesh2 = 'step_10_mesh.ply'
meshfile1 = os.path.join(folder, prefix + mesh1)
meshfile2 = os.path.join(folder, prefix + mesh2)
plot_two_mesh(meshfile1, meshfile2, 0, 0, -30)
|