File size: 7,069 Bytes
352b049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import tempfile
import os
import cv2
import numpy as np
import imageio
import torch
import torchvision.io as io
from torchvision.transforms import functional as F
from PIL import Image, ImageDraw, ImageFont
import torch.nn.functional as nnf

def convert_to_rgb(frame):
    """Convert frame to RGB format."""
    if frame.shape[2] == 4:  # RGBA
        # Convert RGBA to RGB using alpha compositing with white background
        alpha = frame[:, :, 3:4] / 255.0
        rgb = frame[:, :, :3]
        return (rgb * alpha + (1 - alpha) * 255).astype(np.uint8)
    return frame

def process_frames_batch(frames, target_size, device):
    """Process a batch of frames efficiently."""
    # Stack frames and move to GPU
    frames = torch.stack(frames).to(device)
    # Batch resize
    frames = nnf.interpolate(frames, size=target_size, 
                           mode='bilinear', align_corners=False)
    return frames

def combine_video(obj_dir, output_path, input_frames=None, displayed_preds=3):
    """Combine multiple GIFs into a grid layout using torchvision."""
    print("Starting video combination process...")
    
    # Set device for GPU acceleration
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    
    # Get all GIF files from shadow_gif directory
    shadow_gif_dir = os.path.join(obj_dir, 'shadow_gif')
    gif_files = [f for f in os.listdir(shadow_gif_dir) if f.endswith('_tranp.gif') and not f.startswith('obs')]
    gif_files = sorted(gif_files)
    
    # Limit number of GIFs based on displayed_preds
    gif_files = gif_files[:displayed_preds]
    print(f"Using {len(gif_files)} GIFs for {displayed_preds} predictions")
    
    # Calculate grid dimensions
    grid_cols = min(displayed_preds, 3)  # Maximum 3 columns
    grid_rows = (displayed_preds + grid_cols - 1) // grid_cols
    print(f"Grid layout: {grid_rows}x{grid_cols}")
    
    # Load and process all GIFs
    gif_frames = []
    durations = []
    for gif_file in gif_files:
        gif_path = os.path.join(shadow_gif_dir, gif_file)
        print(f"Loading {gif_file}...")
        # Read GIF frames efficiently
        with imageio.get_reader(gif_path) as reader:
            frames = []
            for frame in reader:
                # Convert to RGB if needed
                frame = convert_to_rgb(frame)
                frame = cv2.resize(frame, (frame.shape[1] // 4, frame.shape[0] // 4), interpolation=cv2.INTER_AREA)
                # Convert to tensor and normalize
                frame = torch.from_numpy(frame).permute(2, 0, 1).float().to(device) / 255.0
                frames.append(frame)
        
        # Get duration from the first frame
        with Image.open(gif_path) as img:
            duration = img.info.get('duration', 100) / 1000.0  # Convert to seconds
        
        gif_frames.append(frames)
        durations.append(duration)
    
    if not gif_frames:
        raise ValueError("No GIF files found!")
    
    # Get common duration
    common_duration = min(durations)
    print(f"Common duration: {common_duration}")
    
    # Process input frames if provided
    if input_frames is not None:
        # Convert BGR to RGB and resize input frames
        input_frames = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in input_frames]
        input_frames = [cv2.resize(frame, (frame.shape[1]//8, frame.shape[0]//8), 
                                 interpolation=cv2.INTER_NEAREST) for frame in input_frames]
        input_frames = [torch.from_numpy(frame).permute(2, 0, 1).float().to(device) / 255.0 
                       for frame in input_frames]
    
    # Calculate target size for each GIF in the grid
    first_frame = gif_frames[0][0]
    target_height = first_frame.shape[1]
    target_width = first_frame.shape[2]
    
    # Create grid frames
    num_frames = max(len(frames) for frames in gif_frames)
    grid_frames = []
    
    # Process frames in batches
    batch_size = 4  # Adjust based on GPU memory
    for frame_idx in range(0, num_frames, batch_size):
        batch_end = min(frame_idx + batch_size, num_frames)
        
        # Create empty grid for the batch
        grid = torch.ones((batch_end - frame_idx, 3, target_height * grid_rows, target_width * grid_cols), 
                          device=device)
        
        # Process each GIF in the batch
        for i, frames in enumerate(gif_frames):
            row = i // grid_cols
            col = i % grid_cols
            
            # Get frames for this batch
            batch_frames = frames[frame_idx:batch_end]
            if batch_frames:
                # Process frames in batch
                resized_frames = process_frames_batch(batch_frames, (target_height, target_width), device)
                
                # Add to grid
                for j, frame in enumerate(resized_frames):
                    grid[j, :, row*target_height:(row+1)*target_height, 
                         col*target_width:(col+1)*target_width] = frame
        
        # Add input frames if provided
        if input_frames is not None:
            for i in range(len(gif_frames)):
                row = i // grid_cols
                col = i % grid_cols
                
                # Get input frames for this batch
                batch_input_frames = input_frames[frame_idx:batch_end]
                if batch_input_frames:
                    orig_h, orig_w = batch_input_frames[0].shape[1:3]  # (C, H, W)
                    pip_max_width = target_width // 2
                    pip_max_height = target_height // 2
                    aspect = orig_w / orig_h
                    if pip_max_width / aspect <= pip_max_height:
                        pip_w = pip_max_width
                        pip_h = int(pip_max_width / aspect)
                    else:
                        pip_h = pip_max_height
                        pip_w = int(pip_max_height * aspect)
                    # resize
                    resized_input_frames = process_frames_batch(batch_input_frames, (pip_h, pip_w), device)
                    # Add to grid
                    for j, frame in enumerate(resized_input_frames):
                        x_pos = col * target_width + target_width - frame.shape[2] - 10
                        y_pos = row * target_height + 10
                        grid[j, :, y_pos:y_pos+frame.shape[1], x_pos:x_pos+frame.shape[2]] = frame
        
        # Add batch to grid_frames
        grid_frames.extend([frame for frame in grid])
    
    # Convert frames to numpy and save as GIF
    print(f"Saving to {output_path}")
    frames_np = [(frame.cpu().permute(1, 2, 0).numpy() * 255).astype(np.uint8) 
                 for frame in grid_frames]
    
    # Save as GIF with optimization
    imageio.mimsave(output_path, frames_np, fps=30, optimize=True, quantizer=0, loop=0)
    
    print("Video combination completed!")
    return output_path

if __name__ == "__main__":
    combine_video("./9622_GRAB/", tempfile.NamedTemporaryFile(suffix=".gif", delete=False).name)