Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import Tensor | |
import numpy as np | |
from torch.utils import data | |
from collections import OrderedDict | |
from torch.nn.parameter import Parameter | |
class SincConv(nn.Module): | |
def to_mel(hz): | |
return 2595 * np.log10(1 + hz / 700) | |
def to_hz(mel): | |
return 700 * (10 ** (mel / 2595) - 1) | |
def __init__(self, device,out_channels, kernel_size,in_channels=1,sample_rate=16000, | |
stride=1, padding=0, dilation=1, bias=False, groups=1): | |
super(SincConv,self).__init__() | |
if in_channels != 1: | |
msg = "SincConv only support one input channel (here, in_channels = {%i})" % (in_channels) | |
raise ValueError(msg) | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.sample_rate=sample_rate | |
# Forcing the filters to be odd (i.e, perfectly symmetrics) | |
if kernel_size%2==0: | |
self.kernel_size=self.kernel_size+1 | |
self.device=device | |
self.stride = stride | |
self.padding = padding | |
self.dilation = dilation | |
if bias: | |
raise ValueError('SincConv does not support bias.') | |
if groups > 1: | |
raise ValueError('SincConv does not support groups.') | |
# initialize filterbanks using Mel scale | |
NFFT = 512 | |
f=int(self.sample_rate/2)*np.linspace(0,1,int(NFFT/2)+1) | |
fmel=self.to_mel(f) # Hz to mel conversion | |
fmelmax=np.max(fmel) | |
fmelmin=np.min(fmel) | |
filbandwidthsmel=np.linspace(fmelmin,fmelmax,self.out_channels+1) | |
filbandwidthsf=self.to_hz(filbandwidthsmel) # Mel to Hz conversion | |
self.mel=filbandwidthsf | |
self.hsupp=torch.arange(-(self.kernel_size-1)/2, (self.kernel_size-1)/2+1) | |
self.band_pass=torch.zeros(self.out_channels,self.kernel_size) | |
def forward(self,x): | |
for i in range(len(self.mel)-1): | |
fmin=self.mel[i] | |
fmax=self.mel[i+1] | |
hHigh=(2*fmax/self.sample_rate)*np.sinc(2*fmax*self.hsupp/self.sample_rate) | |
hLow=(2*fmin/self.sample_rate)*np.sinc(2*fmin*self.hsupp/self.sample_rate) | |
hideal=hHigh-hLow | |
self.band_pass[i,:]=Tensor(np.hamming(self.kernel_size))*Tensor(hideal) | |
band_pass_filter=self.band_pass.to(self.device) | |
self.filters = (band_pass_filter).view(self.out_channels, 1, self.kernel_size) | |
return F.conv1d(x, self.filters, stride=self.stride, | |
padding=self.padding, dilation=self.dilation, | |
bias=None, groups=1) | |
class Residual_block(nn.Module): | |
def __init__(self, nb_filts, first = False): | |
super(Residual_block, self).__init__() | |
self.first = first | |
if not self.first: | |
self.bn1 = nn.BatchNorm1d(num_features = nb_filts[0]) | |
self.lrelu = nn.LeakyReLU(negative_slope=0.3) | |
self.conv1 = nn.Conv1d(in_channels = nb_filts[0], | |
out_channels = nb_filts[1], | |
kernel_size = 3, | |
padding = 1, | |
stride = 1) | |
self.bn2 = nn.BatchNorm1d(num_features = nb_filts[1]) | |
self.conv2 = nn.Conv1d(in_channels = nb_filts[1], | |
out_channels = nb_filts[1], | |
padding = 1, | |
kernel_size = 3, | |
stride = 1) | |
if nb_filts[0] != nb_filts[1]: | |
self.downsample = True | |
self.conv_downsample = nn.Conv1d(in_channels = nb_filts[0], | |
out_channels = nb_filts[1], | |
padding = 0, | |
kernel_size = 1, | |
stride = 1) | |
else: | |
self.downsample = False | |
self.mp = nn.MaxPool1d(3) | |
def forward(self, x): | |
identity = x | |
if not self.first: | |
out = self.bn1(x) | |
out = self.lrelu(out) | |
else: | |
out = x | |
out = self.conv1(x) | |
out = self.bn2(out) | |
out = self.lrelu(out) | |
out = self.conv2(out) | |
if self.downsample: | |
identity = self.conv_downsample(identity) | |
out += identity | |
out = self.mp(out) | |
return out | |
class RawNet(nn.Module): | |
def __init__(self, d_args, device): | |
super(RawNet, self).__init__() | |
self.device=device | |
self.Sinc_conv=SincConv(device=self.device, | |
out_channels = d_args['filts'][0], | |
kernel_size = d_args['first_conv'], | |
in_channels = d_args['in_channels'] | |
) | |
self.first_bn = nn.BatchNorm1d(num_features = d_args['filts'][0]) | |
self.selu = nn.SELU(inplace=True) | |
self.block0 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][1], first = True)) | |
self.block1 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][1])) | |
self.block2 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2])) | |
d_args['filts'][2][0] = d_args['filts'][2][1] | |
self.block3 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2])) | |
self.block4 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2])) | |
self.block5 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2])) | |
self.avgpool = nn.AdaptiveAvgPool1d(1) | |
self.fc_attention0 = self._make_attention_fc(in_features = d_args['filts'][1][-1], | |
l_out_features = d_args['filts'][1][-1]) | |
self.fc_attention1 = self._make_attention_fc(in_features = d_args['filts'][1][-1], | |
l_out_features = d_args['filts'][1][-1]) | |
self.fc_attention2 = self._make_attention_fc(in_features = d_args['filts'][2][-1], | |
l_out_features = d_args['filts'][2][-1]) | |
self.fc_attention3 = self._make_attention_fc(in_features = d_args['filts'][2][-1], | |
l_out_features = d_args['filts'][2][-1]) | |
self.fc_attention4 = self._make_attention_fc(in_features = d_args['filts'][2][-1], | |
l_out_features = d_args['filts'][2][-1]) | |
self.fc_attention5 = self._make_attention_fc(in_features = d_args['filts'][2][-1], | |
l_out_features = d_args['filts'][2][-1]) | |
self.bn_before_gru = nn.BatchNorm1d(num_features = d_args['filts'][2][-1]) | |
self.gru = nn.GRU(input_size = d_args['filts'][2][-1], | |
hidden_size = d_args['gru_node'], | |
num_layers = d_args['nb_gru_layer'], | |
batch_first = True) | |
self.fc1_gru = nn.Linear(in_features = d_args['gru_node'], | |
out_features = d_args['nb_fc_node']) | |
self.fc2_gru = nn.Linear(in_features = d_args['nb_fc_node'], | |
out_features = d_args['nb_classes'],bias=True) | |
self.sig = nn.Sigmoid() | |
self.logsoftmax = nn.LogSoftmax(dim=1) | |
def forward(self, x, y = None): | |
nb_samp = x.shape[0] | |
len_seq = x.shape[1] | |
x=x.view(nb_samp,1,len_seq) | |
x = self.Sinc_conv(x) | |
x = F.max_pool1d(torch.abs(x), 3) | |
x = self.first_bn(x) | |
x = self.selu(x) | |
x0 = self.block0(x) | |
y0 = self.avgpool(x0).view(x0.size(0), -1) # torch.Size([batch, filter]) | |
y0 = self.fc_attention0(y0) | |
y0 = self.sig(y0).view(y0.size(0), y0.size(1), -1) # torch.Size([batch, filter, 1]) | |
x = x0 * y0 + y0 # (batch, filter, time) x (batch, filter, 1) | |
x1 = self.block1(x) | |
y1 = self.avgpool(x1).view(x1.size(0), -1) # torch.Size([batch, filter]) | |
y1 = self.fc_attention1(y1) | |
y1 = self.sig(y1).view(y1.size(0), y1.size(1), -1) # torch.Size([batch, filter, 1]) | |
x = x1 * y1 + y1 # (batch, filter, time) x (batch, filter, 1) | |
x2 = self.block2(x) | |
y2 = self.avgpool(x2).view(x2.size(0), -1) # torch.Size([batch, filter]) | |
y2 = self.fc_attention2(y2) | |
y2 = self.sig(y2).view(y2.size(0), y2.size(1), -1) # torch.Size([batch, filter, 1]) | |
x = x2 * y2 + y2 # (batch, filter, time) x (batch, filter, 1) | |
x3 = self.block3(x) | |
y3 = self.avgpool(x3).view(x3.size(0), -1) # torch.Size([batch, filter]) | |
y3 = self.fc_attention3(y3) | |
y3 = self.sig(y3).view(y3.size(0), y3.size(1), -1) # torch.Size([batch, filter, 1]) | |
x = x3 * y3 + y3 # (batch, filter, time) x (batch, filter, 1) | |
x4 = self.block4(x) | |
y4 = self.avgpool(x4).view(x4.size(0), -1) # torch.Size([batch, filter]) | |
y4 = self.fc_attention4(y4) | |
y4 = self.sig(y4).view(y4.size(0), y4.size(1), -1) # torch.Size([batch, filter, 1]) | |
x = x4 * y4 + y4 # (batch, filter, time) x (batch, filter, 1) | |
x5 = self.block5(x) | |
y5 = self.avgpool(x5).view(x5.size(0), -1) # torch.Size([batch, filter]) | |
y5 = self.fc_attention5(y5) | |
y5 = self.sig(y5).view(y5.size(0), y5.size(1), -1) # torch.Size([batch, filter, 1]) | |
x = x5 * y5 + y5 # (batch, filter, time) x (batch, filter, 1) | |
x = self.bn_before_gru(x) | |
x = self.selu(x) | |
x = x.permute(0, 2, 1) #(batch, filt, time) >> (batch, time, filt) | |
self.gru.flatten_parameters() | |
x, _ = self.gru(x) | |
x = x[:,-1,:] | |
x = self.fc1_gru(x) | |
x = self.fc2_gru(x) | |
output=self.logsoftmax(x) | |
print(f"Spec output shape: {output.shape}") | |
return output | |
def _make_attention_fc(self, in_features, l_out_features): | |
l_fc = [] | |
l_fc.append(nn.Linear(in_features = in_features, | |
out_features = l_out_features)) | |
return nn.Sequential(*l_fc) | |
def _make_layer(self, nb_blocks, nb_filts, first = False): | |
layers = [] | |
#def __init__(self, nb_filts, first = False): | |
for i in range(nb_blocks): | |
first = first if i == 0 else False | |
layers.append(Residual_block(nb_filts = nb_filts, | |
first = first)) | |
if i == 0: nb_filts[0] = nb_filts[1] | |
return nn.Sequential(*layers) | |
def summary(self, input_size, batch_size=-1, device="cuda", print_fn = None): | |
if print_fn == None: printfn = print | |
model = self | |
def register_hook(module): | |
def hook(module, input, output): | |
class_name = str(module.__class__).split(".")[-1].split("'")[0] | |
module_idx = len(summary) | |
m_key = "%s-%i" % (class_name, module_idx + 1) | |
summary[m_key] = OrderedDict() | |
summary[m_key]["input_shape"] = list(input[0].size()) | |
summary[m_key]["input_shape"][0] = batch_size | |
if isinstance(output, (list, tuple)): | |
summary[m_key]["output_shape"] = [ | |
[-1] + list(o.size())[1:] for o in output | |
] | |
else: | |
summary[m_key]["output_shape"] = list(output.size()) | |
if len(summary[m_key]["output_shape"]) != 0: | |
summary[m_key]["output_shape"][0] = batch_size | |
params = 0 | |
if hasattr(module, "weight") and hasattr(module.weight, "size"): | |
params += torch.prod(torch.LongTensor(list(module.weight.size()))) | |
summary[m_key]["trainable"] = module.weight.requires_grad | |
if hasattr(module, "bias") and hasattr(module.bias, "size"): | |
params += torch.prod(torch.LongTensor(list(module.bias.size()))) | |
summary[m_key]["nb_params"] = params | |
if ( | |
not isinstance(module, nn.Sequential) | |
and not isinstance(module, nn.ModuleList) | |
and not (module == model) | |
): | |
hooks.append(module.register_forward_hook(hook)) | |
device = device.lower() | |
assert device in [ | |
"cuda", | |
"cpu", | |
], "Input device is not valid, please specify 'cuda' or 'cpu'" | |
if device == "cuda" and torch.cuda.is_available(): | |
dtype = torch.cuda.FloatTensor | |
else: | |
dtype = torch.FloatTensor | |
if isinstance(input_size, tuple): | |
input_size = [input_size] | |
x = [torch.rand(2, *in_size).type(dtype) for in_size in input_size] | |
summary = OrderedDict() | |
hooks = [] | |
model.apply(register_hook) | |
model(*x) | |
for h in hooks: | |
h.remove() | |
print_fn("----------------------------------------------------------------") | |
line_new = "{:>20} {:>25} {:>15}".format("Layer (type)", "Output Shape", "Param #") | |
print_fn(line_new) | |
print_fn("================================================================") | |
total_params = 0 | |
total_output = 0 | |
trainable_params = 0 | |
for layer in summary: | |
# input_shape, output_shape, trainable, nb_params | |
line_new = "{:>20} {:>25} {:>15}".format( | |
layer, | |
str(summary[layer]["output_shape"]), | |
"{0:,}".format(summary[layer]["nb_params"]), | |
) | |
total_params += summary[layer]["nb_params"] | |
total_output += np.prod(summary[layer]["output_shape"]) | |
if "trainable" in summary[layer]: | |
if summary[layer]["trainable"] == True: | |
trainable_params += summary[layer]["nb_params"] | |
print_fn(line_new) | |