File size: 12,571 Bytes
8c8f046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import gradio as gr
from crewai import Agent, Task, Crew, Process
from crewai_tools import EXASearchTool, SerperDevTool, PDFSearchTool
from langchain_groq import ChatGroq
from diffusers import StableDiffusionXLPipeline
import torch
import re
from gradio_client import Client,file,handle_file
from crewai_tools import tool
import os
import gradio as gr
from crewai import Agent, Task, Crew, Process
from crewai_tools import EXASearchTool, SerperDevTool, PDFSearchTool
from langchain_groq import ChatGroq
from gradio_client import Client
from crewai_tools import tool
from collections import defaultdict
import uuid
from PIL import Image
from langchain_community.utilities import GoogleSerperAPIWrapper
from transformers import pipeline
import serpapi
from langchain_core.prompts import ChatPromptTemplate

os.environ['SERPER_API_KEY'] = "dbab3fad5ec37c15ccf2fbe756db009240920ebe"

# Memory management setup
conversation_store = defaultdict(list)
last_k_messages = 4

def add_to_conversation(session_id, message, role="user"):
    conversation_store[session_id].append((role, message))
    if len(conversation_store[session_id]) > last_k_messages:
        conversation_store[session_id] = conversation_store[session_id][-last_k_messages:]

def get_conversation_history(session_id):
    return conversation_store[session_id]

def generate_prompt_with_history(session_id, query):
    history = get_conversation_history(session_id)
    
    if not history:
        return f"User: {query}\n"

    prompt = ""
    # Include only the last interaction pair (question + response)
    if len(history) >= 2:
        last_interaction = history[-2:]
        for role, message in last_interaction:
            prompt += f"{role.capitalize()}: {message}\n"

    prompt += f"User: {query}\n"
    return prompt


# Set up API keys
os.environ['GROQ_API_KEY'] = "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"



# Initialize the language models and tools
llm_text = ChatGroq(model="llama-3.1-70b-versatile", groq_api_key=os.getenv('GROQ_API_KEY'))
# llm_text = ChatGroq(model="llama-3.1-8b-instant", groq_api_key=os.getenv('GROQ_API_KEY'))

def search_tool(query: str):
    
    """
    Search for the given query
    """
    # search_query = "site:https://courses.lumenlearning.com/  Image of {query} " 
    # params = {

    #     "api_key": "e29437416bc0fc3384843da6dfbf7165b2b30f46448d6f560e124184b63ac0a9", 

    #     "engine": "google", 

    #     "q": search_query,

    # }
    # search_results = serpapi.GoogleSearch(params).get_dict()

    # print("Image:",search_results['inline_images'][0]['original'])
    prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a helpful assistant that takes the query from the user and extract only the main content from the given query which can be useful for image search",
        ),
        ("human", "{query}"),
    ]
    )

    chain = prompt | llm_text
    res = chain.invoke(
        {

            "query": query,
        }
    )
    res = res.content
    result = res.replace('"', '')
    m = llm_text.invoke("only tell whether the term :"+result+" is realted to medical or not.if related say:'yes' else 'no'.")

    if m.content == "yes" or m.content == "Yes":
        search_query = f"site:https://courses.lumenlearning.com/ Image of {result}" 
        params = {

            "api_key": "e29437416bc0fc3384843da6dfbf7165b2b30f46448d6f560e124184b63ac0a9", 

            "engine": "google", 

            "q": search_query,

        }



        search_results = serpapi.GoogleSearch(params).get_dict()
        #print(search_results)
        #print(search_results['inline_images'][0]['original'])
        if 'inline_images' in search_results.keys():
          return (search_results['inline_images'][0]['original'])
        else:
          return None 
    else:
        return None



def create_pdf_search_tool(pdf_path):
    return PDFSearchTool(
        pdf=pdf_path,
        config=dict(
            llm=dict(
                provider="groq",
                config=dict(
                    model="llama-3.1-70b-versatile",
                ),
            ),
            embedder=dict(
                provider="huggingface",
                config=dict(
                    model="BAAI/bge-small-en-v1.5",
                ),
            ),
        )
    )



file_upload_agent = Agent(
    role="FileUploadAgent",
    goal="Analyze uploaded file and provide responses based on the knowleage obtained by uploaded file to the {query}",
    backstory="Expert in extracting and processing information from uploaded file and answering queries.",
    llm=llm_text,
    tools=[],
    allow_delegation=False,
    verbose=True,
    memory=True,
)

file_upload_agent_analyser = Agent(
    role="FileUploadAgentAnalyser",
    goal="Modify the retrieved content to readable and well formatted based on the {query}",
    backstory="Expert in taking the query and retrieved content and generate answers well",
    llm=llm_text,
    allow_delegation=False,
    verbose=True,
    memory=True,
)




file_upload_task = Task(
    description="Analyze the content of the uploaded file and provide insights or answers based on  the {query} from knowledge obtained by the uploaded file",
    expected_output="A detailed response based on the uploaded file content related to the {query} ",
    agent=file_upload_agent
)

file_upload_analyser_task = Task(
    description="Modify the retrieved content from FileUploadAgent with proper formatting and user readable based on the {query}",
    expected_output="retrievent content with proper formatting and readeable based on the {query}",
    agent=file_upload_agent_analyser,
    context = [file_upload_task]
)



crew2 = Crew(
    agents=[file_upload_agent,file_upload_agent_analyser],
    tasks=[file_upload_task,file_upload_analyser_task],
    process=Process.sequential,
    memory=True,
    cache = True,
    embedder={
                "provider": "huggingface",
                "config":{
                        "model": 'BAAI/bge-small-en-v1.5'
                }
        }
)




def route_task(session_id, user_input=None, file_path=None):
    if file_path:
        add_to_conversation(session_id, "User uploaded a PDF file.")
        pdf_search_tool = create_pdf_search_tool(file_path)
        file_upload_agent.tools = [pdf_search_tool]

        prompt = generate_prompt_with_history(session_id, user_input)
        inputs = {'pdf': file_path, 'query': prompt}
        result={}
        result['tasks_output'] = crew2.kickoff(inputs=inputs)
        result['raw'] = search_tool(user_input)
        print(result)
        return result

# Define your custom CSS
custom_css = """
    .gradio-container {
        background-color: #e7c6ff; /* Change the background color */
    }
    button.primary-button {
        background-color: #02c39a !important; /* Change the button color */
        color: white !important; /* Button text color */
        border-radius: 5px !important; /* Rounded corners for the button */
    }
    input[type='text'] {
        background-color: #ffb703 !important; /* Change the input field background color */
        border: 1px solid #fb8500 !important; /* Border color for the input field */
        border-radius: 5px !important; /* Rounded corners for the input field */
    }
    /*textarea {
        background-color: #ffcad4 !important; /* Change the textbox background color */
        border: 1px solid #457b9d !important; /* Border color for the textbox */
        border-radius: 5px !important; /* Rounded corners for the textbox */
    }*/
    .right-column {
        display: flex;
        flex-direction: column;
        height: 100%;
    }
    .flex-item {
        flex: 1; /* Flex-grow: allow items to grow */
        margin: 10px;
        /*border: 2px solid #023047; Border color */
        /*border-radius: 5px;  Rounded corners */
        background-color: #ffffff; /* Background color */
        padding: 10px; /* Padding inside the box */
    }
"""
js = """
function createGradioAnimation() {
    var container = document.createElement('div');
    container.id = 'gradio-animation';
    container.style.fontSize = '2em';
    container.style.fontWeight = 'bold';
    container.style.textAlign = 'center';
    container.style.marginBottom = '20px';

    var text = 'Welcome to Our Project Demo!';
    for (var i = 0; i < text.length; i++) {
        (function(i){
            setTimeout(function(){
                var letter = document.createElement('span');
                letter.style.opacity = '0';
                letter.style.transition = 'opacity 0.5s';
                letter.innerText = text[i];

                container.appendChild(letter);

                setTimeout(function() {
                    letter.style.opacity = '1';
                }, 50);
            }, i * 250);
        })(i);
    }

    var gradioContainer = document.querySelector('.gradio-container');
    gradioContainer.insertBefore(container, gradioContainer.firstChild);

    return 'Animation created';
}
"""

# Gradio UI Setup (Including session ID for memory management)
with gr.Blocks(css=custom_css,js=js) as demo:
    with gr.Tabs():
        with gr.TabItem("Advanced Multimodal ChatBot"):
            with gr.Row() as app_row:
                with gr.Column(scale=1) as left_column:
                    app_functionality = gr.Dropdown(
                        label="Chatbot functionality",
                        #choices=["Text Query", "File Upload", "Generate Image","Visual Q&A","Audio"],
                        choices=["File Upload"],
                        value="File Upload", interactive=True)
                    input_txt = gr.Textbox(label="Enter message and upload file...", lines=2, show_label=False)
                    file_upload = gr.File(label="Upload PDF file", file_types=['.pdf'], interactive=True)
                    # image_upload =  gr.Image(label="Picture here", type="pil")
            #         audio_input = gr.Audio(
            #     label="Upload or Record Audio",
            #     type="filepath",  # Use 'file' to get the file path
            # )
                    submit_btn = gr.Button(value="Submit")
                    clear_btn = gr.Button(value="Clear")
                    session_id = gr.State()  # Keep track of the session ID for memory

                with gr.Column(scale=8) as right_column:
                    chatbot_output = gr.Markdown(label="Output", elem_classes="flex-item")
                    image_output = gr.Image(label="Related Image", elem_classes="flex-item")  # Image component for displaying images
            def clear_all():
                return "", None, "", None

            clear_btn.click(
                fn=clear_all,
                inputs=[],
                outputs=[input_txt, file_upload,chatbot_output, image_output]
            )


            # Define action on submit
            def handle_submit(input_txt, file_upload, app_functionality, session_id):
                if not session_id:
                    session_id = str(uuid.uuid4())

                result = None
                image_path = None

                if app_functionality == "File Upload":
                    if file_upload:
                       result = route_task(session_id,file_path=file_upload.name, user_input=input_txt)


                # Handle the output
                if isinstance(result, dict) :
                    raw_output = result.get('raw', None)
                    tasks_output = result.get('tasks_output', [])

                    if tasks_output:
                        image_path = raw_output
                        print("Image_path: ",image_path)
                        #image_output.update(value=image_path, visible=True)
                        print("Tasks output",tasks_output.raw)
                        #summary = tasks_output[0].get('summary', 'No summary available.')
                        add_to_conversation(session_id, tasks_output.raw, role="AI")
                        return tasks_output.raw,image_path,session_id
                    else:
                        return "No valid output available.", None, session_id
                else:
                    add_to_conversation(session_id, str(result), role="AI")
                    return str(result), None, session_id


            submit_btn.click(fn=handle_submit, inputs=[input_txt, file_upload, app_functionality, session_id], outputs=[chatbot_output, image_output, session_id])

demo.launch(debug=True)