File size: 12,571 Bytes
8c8f046 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import os
import gradio as gr
from crewai import Agent, Task, Crew, Process
from crewai_tools import EXASearchTool, SerperDevTool, PDFSearchTool
from langchain_groq import ChatGroq
from diffusers import StableDiffusionXLPipeline
import torch
import re
from gradio_client import Client,file,handle_file
from crewai_tools import tool
import os
import gradio as gr
from crewai import Agent, Task, Crew, Process
from crewai_tools import EXASearchTool, SerperDevTool, PDFSearchTool
from langchain_groq import ChatGroq
from gradio_client import Client
from crewai_tools import tool
from collections import defaultdict
import uuid
from PIL import Image
from langchain_community.utilities import GoogleSerperAPIWrapper
from transformers import pipeline
import serpapi
from langchain_core.prompts import ChatPromptTemplate
os.environ['SERPER_API_KEY'] = "dbab3fad5ec37c15ccf2fbe756db009240920ebe"
# Memory management setup
conversation_store = defaultdict(list)
last_k_messages = 4
def add_to_conversation(session_id, message, role="user"):
conversation_store[session_id].append((role, message))
if len(conversation_store[session_id]) > last_k_messages:
conversation_store[session_id] = conversation_store[session_id][-last_k_messages:]
def get_conversation_history(session_id):
return conversation_store[session_id]
def generate_prompt_with_history(session_id, query):
history = get_conversation_history(session_id)
if not history:
return f"User: {query}\n"
prompt = ""
# Include only the last interaction pair (question + response)
if len(history) >= 2:
last_interaction = history[-2:]
for role, message in last_interaction:
prompt += f"{role.capitalize()}: {message}\n"
prompt += f"User: {query}\n"
return prompt
# Set up API keys
os.environ['GROQ_API_KEY'] = "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"
# Initialize the language models and tools
llm_text = ChatGroq(model="llama-3.1-70b-versatile", groq_api_key=os.getenv('GROQ_API_KEY'))
# llm_text = ChatGroq(model="llama-3.1-8b-instant", groq_api_key=os.getenv('GROQ_API_KEY'))
def search_tool(query: str):
"""
Search for the given query
"""
# search_query = "site:https://courses.lumenlearning.com/ Image of {query} "
# params = {
# "api_key": "e29437416bc0fc3384843da6dfbf7165b2b30f46448d6f560e124184b63ac0a9",
# "engine": "google",
# "q": search_query,
# }
# search_results = serpapi.GoogleSearch(params).get_dict()
# print("Image:",search_results['inline_images'][0]['original'])
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that takes the query from the user and extract only the main content from the given query which can be useful for image search",
),
("human", "{query}"),
]
)
chain = prompt | llm_text
res = chain.invoke(
{
"query": query,
}
)
res = res.content
result = res.replace('"', '')
m = llm_text.invoke("only tell whether the term :"+result+" is realted to medical or not.if related say:'yes' else 'no'.")
if m.content == "yes" or m.content == "Yes":
search_query = f"site:https://courses.lumenlearning.com/ Image of {result}"
params = {
"api_key": "e29437416bc0fc3384843da6dfbf7165b2b30f46448d6f560e124184b63ac0a9",
"engine": "google",
"q": search_query,
}
search_results = serpapi.GoogleSearch(params).get_dict()
#print(search_results)
#print(search_results['inline_images'][0]['original'])
if 'inline_images' in search_results.keys():
return (search_results['inline_images'][0]['original'])
else:
return None
else:
return None
def create_pdf_search_tool(pdf_path):
return PDFSearchTool(
pdf=pdf_path,
config=dict(
llm=dict(
provider="groq",
config=dict(
model="llama-3.1-70b-versatile",
),
),
embedder=dict(
provider="huggingface",
config=dict(
model="BAAI/bge-small-en-v1.5",
),
),
)
)
file_upload_agent = Agent(
role="FileUploadAgent",
goal="Analyze uploaded file and provide responses based on the knowleage obtained by uploaded file to the {query}",
backstory="Expert in extracting and processing information from uploaded file and answering queries.",
llm=llm_text,
tools=[],
allow_delegation=False,
verbose=True,
memory=True,
)
file_upload_agent_analyser = Agent(
role="FileUploadAgentAnalyser",
goal="Modify the retrieved content to readable and well formatted based on the {query}",
backstory="Expert in taking the query and retrieved content and generate answers well",
llm=llm_text,
allow_delegation=False,
verbose=True,
memory=True,
)
file_upload_task = Task(
description="Analyze the content of the uploaded file and provide insights or answers based on the {query} from knowledge obtained by the uploaded file",
expected_output="A detailed response based on the uploaded file content related to the {query} ",
agent=file_upload_agent
)
file_upload_analyser_task = Task(
description="Modify the retrieved content from FileUploadAgent with proper formatting and user readable based on the {query}",
expected_output="retrievent content with proper formatting and readeable based on the {query}",
agent=file_upload_agent_analyser,
context = [file_upload_task]
)
crew2 = Crew(
agents=[file_upload_agent,file_upload_agent_analyser],
tasks=[file_upload_task,file_upload_analyser_task],
process=Process.sequential,
memory=True,
cache = True,
embedder={
"provider": "huggingface",
"config":{
"model": 'BAAI/bge-small-en-v1.5'
}
}
)
def route_task(session_id, user_input=None, file_path=None):
if file_path:
add_to_conversation(session_id, "User uploaded a PDF file.")
pdf_search_tool = create_pdf_search_tool(file_path)
file_upload_agent.tools = [pdf_search_tool]
prompt = generate_prompt_with_history(session_id, user_input)
inputs = {'pdf': file_path, 'query': prompt}
result={}
result['tasks_output'] = crew2.kickoff(inputs=inputs)
result['raw'] = search_tool(user_input)
print(result)
return result
# Define your custom CSS
custom_css = """
.gradio-container {
background-color: #e7c6ff; /* Change the background color */
}
button.primary-button {
background-color: #02c39a !important; /* Change the button color */
color: white !important; /* Button text color */
border-radius: 5px !important; /* Rounded corners for the button */
}
input[type='text'] {
background-color: #ffb703 !important; /* Change the input field background color */
border: 1px solid #fb8500 !important; /* Border color for the input field */
border-radius: 5px !important; /* Rounded corners for the input field */
}
/*textarea {
background-color: #ffcad4 !important; /* Change the textbox background color */
border: 1px solid #457b9d !important; /* Border color for the textbox */
border-radius: 5px !important; /* Rounded corners for the textbox */
}*/
.right-column {
display: flex;
flex-direction: column;
height: 100%;
}
.flex-item {
flex: 1; /* Flex-grow: allow items to grow */
margin: 10px;
/*border: 2px solid #023047; Border color */
/*border-radius: 5px; Rounded corners */
background-color: #ffffff; /* Background color */
padding: 10px; /* Padding inside the box */
}
"""
js = """
function createGradioAnimation() {
var container = document.createElement('div');
container.id = 'gradio-animation';
container.style.fontSize = '2em';
container.style.fontWeight = 'bold';
container.style.textAlign = 'center';
container.style.marginBottom = '20px';
var text = 'Welcome to Our Project Demo!';
for (var i = 0; i < text.length; i++) {
(function(i){
setTimeout(function(){
var letter = document.createElement('span');
letter.style.opacity = '0';
letter.style.transition = 'opacity 0.5s';
letter.innerText = text[i];
container.appendChild(letter);
setTimeout(function() {
letter.style.opacity = '1';
}, 50);
}, i * 250);
})(i);
}
var gradioContainer = document.querySelector('.gradio-container');
gradioContainer.insertBefore(container, gradioContainer.firstChild);
return 'Animation created';
}
"""
# Gradio UI Setup (Including session ID for memory management)
with gr.Blocks(css=custom_css,js=js) as demo:
with gr.Tabs():
with gr.TabItem("Advanced Multimodal ChatBot"):
with gr.Row() as app_row:
with gr.Column(scale=1) as left_column:
app_functionality = gr.Dropdown(
label="Chatbot functionality",
#choices=["Text Query", "File Upload", "Generate Image","Visual Q&A","Audio"],
choices=["File Upload"],
value="File Upload", interactive=True)
input_txt = gr.Textbox(label="Enter message and upload file...", lines=2, show_label=False)
file_upload = gr.File(label="Upload PDF file", file_types=['.pdf'], interactive=True)
# image_upload = gr.Image(label="Picture here", type="pil")
# audio_input = gr.Audio(
# label="Upload or Record Audio",
# type="filepath", # Use 'file' to get the file path
# )
submit_btn = gr.Button(value="Submit")
clear_btn = gr.Button(value="Clear")
session_id = gr.State() # Keep track of the session ID for memory
with gr.Column(scale=8) as right_column:
chatbot_output = gr.Markdown(label="Output", elem_classes="flex-item")
image_output = gr.Image(label="Related Image", elem_classes="flex-item") # Image component for displaying images
def clear_all():
return "", None, "", None
clear_btn.click(
fn=clear_all,
inputs=[],
outputs=[input_txt, file_upload,chatbot_output, image_output]
)
# Define action on submit
def handle_submit(input_txt, file_upload, app_functionality, session_id):
if not session_id:
session_id = str(uuid.uuid4())
result = None
image_path = None
if app_functionality == "File Upload":
if file_upload:
result = route_task(session_id,file_path=file_upload.name, user_input=input_txt)
# Handle the output
if isinstance(result, dict) :
raw_output = result.get('raw', None)
tasks_output = result.get('tasks_output', [])
if tasks_output:
image_path = raw_output
print("Image_path: ",image_path)
#image_output.update(value=image_path, visible=True)
print("Tasks output",tasks_output.raw)
#summary = tasks_output[0].get('summary', 'No summary available.')
add_to_conversation(session_id, tasks_output.raw, role="AI")
return tasks_output.raw,image_path,session_id
else:
return "No valid output available.", None, session_id
else:
add_to_conversation(session_id, str(result), role="AI")
return str(result), None, session_id
submit_btn.click(fn=handle_submit, inputs=[input_txt, file_upload, app_functionality, session_id], outputs=[chatbot_output, image_output, session_id])
demo.launch(debug=True) |