Spaces:
Runtime error
Runtime error
File size: 13,257 Bytes
ff715ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = "6"
# In China, set this to use huggingface
# os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
import cv2
import io
import gc
import yaml
import argparse
import torch
import torchvision
import diffusers
from diffusers import StableDiffusionPipeline, AutoencoderKL, DDPMScheduler, ControlNetModel
from src.utils import *
from src.keyframe_selection import get_keyframe_ind
from src.diffusion_hacked import apply_FRESCO_attn, apply_FRESCO_opt, disable_FRESCO_opt
from src.diffusion_hacked import get_flow_and_interframe_paras, get_intraframe_paras
from src.pipe_FRESCO import inference
def get_models(config):
print('\n' + '=' * 100)
print('creating models...')
import sys
sys.path.append("./src/ebsynth/deps/gmflow/")
sys.path.append("./src/EGNet/")
sys.path.append("./src/ControlNet/")
from gmflow.gmflow import GMFlow
from model import build_model
from annotator.hed import HEDdetector
from annotator.canny import CannyDetector
from annotator.midas import MidasDetector
# optical flow
flow_model = GMFlow(feature_channels=128,
num_scales=1,
upsample_factor=8,
num_head=1,
attention_type='swin',
ffn_dim_expansion=4,
num_transformer_layers=6,
).to('cuda')
checkpoint = torch.load(config['gmflow_path'], map_location=lambda storage, loc: storage)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
flow_model.load_state_dict(weights, strict=False)
flow_model.eval()
print('create optical flow estimation model successfully!')
# saliency detection
sod_model = build_model('resnet')
sod_model.load_state_dict(torch.load(config['sod_path']))
sod_model.to("cuda").eval()
print('create saliency detection model successfully!')
# controlnet
if config['controlnet_type'] not in ['hed', 'depth', 'canny']:
print('unsupported control type, set to hed')
config['controlnet_type'] = 'hed'
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+config['controlnet_type'],
torch_dtype=torch.float16)
controlnet.to("cuda")
if config['controlnet_type'] == 'depth':
detector = MidasDetector()
elif config['controlnet_type'] == 'canny':
detector = CannyDetector()
else:
detector = HEDdetector()
print('create controlnet model-' + config['controlnet_type'] + ' successfully!')
# diffusion model
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(config['sd_path'], vae=vae, torch_dtype=torch.float16)
pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config)
#noise_scheduler = DDPMScheduler.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="scheduler")
pipe.to("cuda")
pipe.scheduler.set_timesteps(config['num_inference_steps'], device=pipe._execution_device)
if config['use_freeu']:
from src.free_lunch_utils import apply_freeu
apply_freeu(pipe, b1=1.2, b2=1.5, s1=1.0, s2=1.0)
frescoProc = apply_FRESCO_attn(pipe)
frescoProc.controller.disable_controller()
apply_FRESCO_opt(pipe)
print('create diffusion model ' + config['sd_path'] + ' successfully!')
for param in flow_model.parameters():
param.requires_grad = False
for param in sod_model.parameters():
param.requires_grad = False
for param in controlnet.parameters():
param.requires_grad = False
for param in pipe.unet.parameters():
param.requires_grad = False
return pipe, frescoProc, controlnet, detector, flow_model, sod_model
def apply_control(x, detector, config):
if config['controlnet_type'] == 'depth':
detected_map, _ = detector(x)
elif config['controlnet_type'] == 'canny':
detected_map = detector(x, 50, 100)
else:
detected_map = detector(x)
return detected_map
def run_keyframe_translation(config):
pipe, frescoProc, controlnet, detector, flow_model, sod_model = get_models(config)
device = pipe._execution_device
guidance_scale = 7.5
do_classifier_free_guidance = guidance_scale > 1
assert(do_classifier_free_guidance)
timesteps = pipe.scheduler.timesteps
cond_scale = [config['cond_scale']] * config['num_inference_steps']
dilate = Dilate(device=device)
base_prompt = config['prompt']
if 'Realistic' in config['sd_path'] or 'realistic' in config['sd_path']:
a_prompt = ', RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3, '
n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'
else:
a_prompt = ', best quality, extremely detailed, '
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing finger, extra digit, fewer digits, cropped, worst quality, low quality'
print('\n' + '=' * 100)
print('key frame selection for \"%s\"...'%(config['file_path']))
video_cap = cv2.VideoCapture(config['file_path'])
frame_num = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))
# you can set extra_prompts for individual keyframe
# for example, extra_prompts[38] = ', closed eyes' to specify the person frame38 closes the eyes
extra_prompts = [''] * frame_num
keys = get_keyframe_ind(config['file_path'], frame_num, config['mininterv'], config['maxinterv'])
os.makedirs(config['save_path'], exist_ok=True)
os.makedirs(config['save_path']+'keys', exist_ok=True)
os.makedirs(config['save_path']+'video', exist_ok=True)
sublists = [keys[i:i+config['batch_size']-2] for i in range(2, len(keys), config['batch_size']-2)]
sublists[0].insert(0, keys[0])
sublists[0].insert(1, keys[1])
if len(sublists) > 1 and len(sublists[-1]) < 3:
add_num = 3 - len(sublists[-1])
sublists[-1] = sublists[-2][-add_num:] + sublists[-1]
sublists[-2] = sublists[-2][:-add_num]
if not sublists[-2]:
del sublists[-2]
print('processing %d batches:\nkeyframe indexes'%(len(sublists)), sublists)
print('\n' + '=' * 100)
print('video to video translation...')
batch_ind = 0
propagation_mode = batch_ind > 0
imgs = []
record_latents = []
video_cap = cv2.VideoCapture(config['file_path'])
for i in range(frame_num):
# prepare a batch of frame based on sublists
success, frame = video_cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = resize_image(frame, 512)
H, W, C = img.shape
Image.fromarray(img).save(os.path.join(config['save_path'], 'video/%04d.png'%(i)))
if i not in sublists[batch_ind]:
continue
imgs += [img]
if i != sublists[batch_ind][-1]:
continue
print('processing batch [%d/%d] with %d frames'%(batch_ind+1, len(sublists), len(sublists[batch_ind])))
# prepare input
batch_size = len(imgs)
n_prompts = [n_prompt] * len(imgs)
prompts = [base_prompt + a_prompt + extra_prompts[ind] for ind in sublists[batch_ind]]
if propagation_mode: # restore the extra_prompts from previous batch
assert len(imgs) == len(sublists[batch_ind]) + 2
prompts = ref_prompt + prompts
prompt_embeds = pipe._encode_prompt(
prompts,
device,
1,
do_classifier_free_guidance,
n_prompts,
)
imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0)
edges = torch.cat([numpy2tensor(apply_control(img, detector, config)[:, :, None]) for img in imgs], dim=0)
edges = edges.repeat(1,3,1,1).cuda() * 0.5 + 0.5
if do_classifier_free_guidance:
edges = torch.cat([edges.to(pipe.unet.dtype)] * 2)
if config['use_salinecy']:
saliency = get_saliency(imgs, sod_model, dilate)
else:
saliency = None
# prepare parameters for inter-frame and intra-frame consistency
flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(flow_model, imgs)
correlation_matrix = get_intraframe_paras(pipe, imgs_torch, frescoProc,
prompt_embeds, seed = config['seed'])
'''
Flexible settings for attention:
* Turn off FRESCO-guided attention: frescoProc.controller.disable_controller()
Then you can turn on one specific attention submodule
* Turn on Cross-frame attention: frescoProc.controller.enable_cfattn(attn_mask)
* Turn on Spatial-guided attention: frescoProc.controller.enable_intraattn()
* Turn on Temporal-guided attention: frescoProc.controller.enable_interattn(interattn_paras)
Flexible settings for optimization:
* Turn off Spatial-guided optimization: set optimize_temporal = False in apply_FRESCO_opt()
* Turn off Temporal-guided optimization: set correlation_matrix = [] in apply_FRESCO_opt()
* Turn off FRESCO-guided optimization: disable_FRESCO_opt(pipe)
Flexible settings for background smoothing:
* Turn off background smoothing: set saliency = None in apply_FRESCO_opt()
'''
# Turn on all FRESCO support
frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask)
apply_FRESCO_opt(pipe, steps = timesteps[:config['end_opt_step']],
flows = flows, occs = occs, correlation_matrix=correlation_matrix,
saliency=saliency, optimize_temporal = True)
gc.collect()
torch.cuda.empty_cache()
# run!
latents = inference(pipe, controlnet, frescoProc,
imgs_torch, prompt_embeds, edges, timesteps,
cond_scale, config['num_inference_steps'], config['num_warmup_steps'],
do_classifier_free_guidance, config['seed'], guidance_scale, config['use_controlnet'],
record_latents, propagation_mode,
flows = flows, occs = occs, saliency=saliency, repeat_noise=True)
gc.collect()
torch.cuda.empty_cache()
with torch.no_grad():
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
image = torch.clamp(image, -1 , 1)
save_imgs = tensor2numpy(image)
bias = 2 if propagation_mode else 0
for ind, num in enumerate(sublists[batch_ind]):
Image.fromarray(save_imgs[ind+bias]).save(os.path.join(config['save_path'], 'keys/%04d.png'%(num)))
gc.collect()
torch.cuda.empty_cache()
batch_ind += 1
# current batch uses the last frame of the previous batch as ref
ref_prompt= [prompts[0], prompts[-1]]
imgs = [imgs[0], imgs[-1]]
propagation_mode = batch_ind > 0
if batch_ind == len(sublists):
gc.collect()
torch.cuda.empty_cache()
break
return keys
def run_full_video_translation(config, keys):
print('\n' + '=' * 100)
if not config['run_ebsynth']:
print('to translate full video with ebsynth, install ebsynth and run:')
else:
print('translating full video with:')
video_cap = cv2.VideoCapture(config['file_path'])
fps = int(video_cap.get(cv2.CAP_PROP_FPS))
o_video = os.path.join(config['save_path'], 'blend.mp4')
max_process = config['max_process']
save_path = config['save_path']
key_ind = io.StringIO()
for k in keys:
print('%d'%(k), end=' ', file=key_ind)
cmd = (
f'python video_blend.py {save_path} --key keys '
f'--key_ind {key_ind.getvalue()} --output {o_video} --fps {fps} '
f'--n_proc {max_process} -ps')
print('\n```')
print(cmd)
print('```')
if config['run_ebsynth']:
os.system(cmd)
print('\n' + '=' * 100)
print('Done')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config_path', type=str,
default='./config/config_carturn.yaml',
help='The configuration file.')
opt = parser.parse_args()
print('=' * 100)
print('loading configuration...')
with open(opt.config_path, "r") as f:
config = yaml.safe_load(f)
for name, value in sorted(config.items()):
print('%s: %s' % (str(name), str(value)))
keys = run_keyframe_translation(config)
run_full_video_translation(config, keys)
|