Spaces:
Runtime error
Runtime error
File size: 6,829 Bytes
9ce2bc6 983062a 9ce2bc6 0330034 9ce2bc6 7f458a0 9ce2bc6 7f458a0 9ce2bc6 7f458a0 9ce2bc6 19551f7 9ce2bc6 0330034 9ce2bc6 2f5f656 9ce2bc6 63840ff 9ce2bc6 2f5f656 9ce2bc6 2f5f656 9ce2bc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from lcm_pipeline import LatentConsistencyModelPipeline
from lcm_scheduler import LCMScheduler
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor
import os
import torch
from tqdm import tqdm
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
DESCRIPTION = "# Latent Consistency Model"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
DTYPE = torch.float32 # torch.float16 works as well, but pictures seem to be a bit worse
model_id = "digiplay/DreamShaper_7"
# Initalize Diffusers Model:
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
config = UNet2DConditionModel.load_config(model_id, subfolder="unet")
config["time_cond_proj_dim"] = 256
unet = UNet2DConditionModel.from_config(config)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker")
feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor")
# Initalize Scheduler:
scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon")
HF_TOKEN = os.environ.get("HF_TOKEN", None)
if torch.cuda.is_available():
# Replace the unet with LCM:
# lcm_unet_ckpt = hf_hub_download("SimianLuo/LCM_Dreamshaper_v7", filename="LCM_Dreamshaper_v7_4k.safetensors", token=HF_TOKEN)
lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors"
ckpt = load_file(lcm_unet_ckpt)
m, u = unet.load_state_dict(ckpt, strict=False)
if len(m) > 0:
print("missing keys:")
print(m)
if len(u) > 0:
print("unexpected keys:")
print(u)
# LCM Pipeline:
pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor)
pipe = pipe.to(torch_device="cuda", torch_dtype=DTYPE)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def generate(
prompt: str,
seed: int = 0,
width: int = 512,
height: int = 512,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
num_images: int = 4,
) -> PIL.Image.Image:
torch.manual_seed(seed)
if width > 512 or height > 512:
num_images = 2
return pipe(
prompt=prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
lcm_origin_steps=50,
output_type="pil",
).images
examples = [
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery", grid=[2]
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
# with gr.Row():
# num_images = gr.Slider(
# label="Number of images"
# minimum=1,
# maximum=8,
# step=1,
# value=4,
# )
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
# demo.queue(max_size=20).launch()
demo.launch(share=True)
|