File size: 6,829 Bytes
9ce2bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983062a
9ce2bc6
 
 
 
 
0330034
9ce2bc6
 
 
 
 
7f458a0
9ce2bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
7f458a0
 
9ce2bc6
 
7f458a0
 
9ce2bc6
 
 
 
 
 
 
 
 
 
 
 
19551f7
9ce2bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0330034
 
 
9ce2bc6
 
 
 
 
 
 
 
 
 
 
 
2f5f656
 
9ce2bc6
63840ff
9ce2bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f5f656
 
9ce2bc6
 
 
 
 
 
2f5f656
9ce2bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python
from __future__ import annotations

import os
import random

import gradio as gr
import numpy as np
import PIL.Image
import torch
from lcm_pipeline import LatentConsistencyModelPipeline
from lcm_scheduler import LCMScheduler

from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor

import os
import torch
from tqdm import tqdm
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download

DESCRIPTION = "# Latent Consistency Model"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
DTYPE = torch.float32  # torch.float16 works as well, but pictures seem to be a bit worse

model_id = "digiplay/DreamShaper_7"


# Initalize Diffusers Model:
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
config = UNet2DConditionModel.load_config(model_id, subfolder="unet")
config["time_cond_proj_dim"] = 256

unet = UNet2DConditionModel.from_config(config)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker")
feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor")

# Initalize Scheduler:
scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon")

HF_TOKEN = os.environ.get("HF_TOKEN", None)

if torch.cuda.is_available():
    # Replace the unet with LCM:
    # lcm_unet_ckpt = hf_hub_download("SimianLuo/LCM_Dreamshaper_v7", filename="LCM_Dreamshaper_v7_4k.safetensors", token=HF_TOKEN)
    lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors"
    ckpt = load_file(lcm_unet_ckpt)
    m, u = unet.load_state_dict(ckpt, strict=False)
    if len(m) > 0:
        print("missing keys:")
        print(m)
    if len(u) > 0:
        print("unexpected keys:")
        print(u)


    # LCM Pipeline:
    pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor)
    pipe = pipe.to(torch_device="cuda", torch_dtype=DTYPE)

    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def generate(
    prompt: str,
    seed: int = 0,
    width: int = 512,
    height: int = 512,
    guidance_scale: float = 8.0,
    num_inference_steps: int = 4,
    num_images: int = 4,
) -> PIL.Image.Image:
    torch.manual_seed(seed)

    if width > 512 or height > 512:
        num_images = 2

    return pipe(
        prompt=prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images,
        lcm_origin_steps=50,
        output_type="pil",
    ).images

examples = [
    "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
    "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery", grid=[2]
        )
    with gr.Accordion("Advanced options", open=False):
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=512,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=512,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance scale for base",
                minimum=2,
                maximum=14,
                step=0.1,
                value=8.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps for base",
                minimum=1,
                maximum=8,
                step=1,
                value=4,
            )
        # with gr.Row():
        #     num_images = gr.Slider(
        #         label="Number of images"
        #         minimum=1,
        #         maximum=8,
        #         step=1,
        #         value=4,
        #     )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    gr.on(
        triggers=[
            prompt.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    # demo.queue(max_size=20).launch()
    demo.launch(share=True)