File size: 33,021 Bytes
19400f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
from functools import wraps
from flask import (
    Flask,
    jsonify,
    request,
    Response,
    render_template_string,
    abort,
    send_from_directory,
    send_file,
)
from flask_cors import CORS
from flask_compress import Compress
import markdown
import argparse
from transformers import AutoTokenizer, AutoProcessor, pipeline
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM
from transformers import BlipForConditionalGeneration
import unicodedata
import torch
import time
import os
import gc
import sys
import secrets
from PIL import Image
import base64
from io import BytesIO
from random import randint
import webuiapi
import hashlib
from constants import *
from colorama import Fore, Style, init as colorama_init

colorama_init()

if sys.hexversion < 0x030b0000:
    print(f"{Fore.BLUE}{Style.BRIGHT}Python 3.11 or newer is recommended to run this program.{Style.RESET_ALL}")
    time.sleep(2)

class SplitArgs(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(
            namespace, self.dest, values.replace('"', "").replace("'", "").split(",")
        )

#Setting Root Folders for Silero Generations so it is compatible with STSL, should not effect regular runs. - Rolyat
parent_dir = os.path.dirname(os.path.abspath(__file__))
SILERO_SAMPLES_PATH = os.path.join(parent_dir, "tts_samples")
SILERO_SAMPLE_TEXT = os.path.join(parent_dir)

# Create directories if they don't exist
if not os.path.exists(SILERO_SAMPLES_PATH):
    os.makedirs(SILERO_SAMPLES_PATH)
if not os.path.exists(SILERO_SAMPLE_TEXT):
    os.makedirs(SILERO_SAMPLE_TEXT)

# Script arguments
parser = argparse.ArgumentParser(
    prog="SillyTavern Extras", description="Web API for transformers models"
)
parser.add_argument(
    "--port", type=int, help="Specify the port on which the application is hosted"
)
parser.add_argument(
    "--listen", action="store_true", help="Host the app on the local network"
)
parser.add_argument(
    "--share", action="store_true", help="Share the app on CloudFlare tunnel"
)
parser.add_argument("--cpu", action="store_true", help="Run the models on the CPU")
parser.add_argument("--cuda", action="store_false", dest="cpu", help="Run the models on the GPU")
parser.add_argument("--cuda-device", help="Specify the CUDA device to use")
parser.add_argument("--mps", "--apple", "--m1", "--m2", action="store_false", dest="cpu", help="Run the models on Apple Silicon")
parser.set_defaults(cpu=True)
parser.add_argument("--summarization-model", help="Load a custom summarization model")
parser.add_argument(
    "--classification-model", help="Load a custom text classification model"
)
parser.add_argument("--captioning-model", help="Load a custom captioning model")
parser.add_argument("--embedding-model", help="Load a custom text embedding model")
parser.add_argument("--chroma-host", help="Host IP for a remote ChromaDB instance")
parser.add_argument("--chroma-port", help="HTTP port for a remote ChromaDB instance (defaults to 8000)")
parser.add_argument("--chroma-folder", help="Path for chromadb persistence folder", default='.chroma_db')
parser.add_argument('--chroma-persist', help="ChromaDB persistence", default=True, action=argparse.BooleanOptionalAction)
parser.add_argument(
    "--secure", action="store_true", help="Enforces the use of an API key"
)
sd_group = parser.add_mutually_exclusive_group()

local_sd = sd_group.add_argument_group("sd-local")
local_sd.add_argument("--sd-model", help="Load a custom SD image generation model")
local_sd.add_argument("--sd-cpu", help="Force the SD pipeline to run on the CPU", action="store_true")

remote_sd = sd_group.add_argument_group("sd-remote")
remote_sd.add_argument(
    "--sd-remote", action="store_true", help="Use a remote backend for SD"
)
remote_sd.add_argument(
    "--sd-remote-host", type=str, help="Specify the host of the remote SD backend"
)
remote_sd.add_argument(
    "--sd-remote-port", type=int, help="Specify the port of the remote SD backend"
)
remote_sd.add_argument(
    "--sd-remote-ssl", action="store_true", help="Use SSL for the remote SD backend"
)
remote_sd.add_argument(
    "--sd-remote-auth",
    type=str,
    help="Specify the username:password for the remote SD backend (if required)",
)

parser.add_argument(
    "--enable-modules",
    action=SplitArgs,
    default=[],
    help="Override a list of enabled modules",
)

args = parser.parse_args()
# [HF, Huggingface] Set port to 7860, set host to remote. 
port = 7860
host = "0.0.0.0"
summarization_model = (
    args.summarization_model
    if args.summarization_model
    else DEFAULT_SUMMARIZATION_MODEL
)
classification_model = (
    args.classification_model
    if args.classification_model
    else DEFAULT_CLASSIFICATION_MODEL
)
captioning_model = (
    args.captioning_model if args.captioning_model else DEFAULT_CAPTIONING_MODEL
)
embedding_model = (
    args.embedding_model if args.embedding_model else DEFAULT_EMBEDDING_MODEL
)

sd_use_remote = False if args.sd_model else True
sd_model = args.sd_model if args.sd_model else DEFAULT_SD_MODEL
sd_remote_host = args.sd_remote_host if args.sd_remote_host else DEFAULT_REMOTE_SD_HOST
sd_remote_port = args.sd_remote_port if args.sd_remote_port else DEFAULT_REMOTE_SD_PORT
sd_remote_ssl = args.sd_remote_ssl
sd_remote_auth = args.sd_remote_auth

modules = (
    args.enable_modules if args.enable_modules and len(args.enable_modules) > 0 else []
)

if len(modules) == 0:
    print(
        f"{Fore.RED}{Style.BRIGHT}You did not select any modules to run! Choose them by adding an --enable-modules option"
    )
    print(f"Example: --enable-modules=caption,summarize{Style.RESET_ALL}")

# Models init
cuda_device = DEFAULT_CUDA_DEVICE if not args.cuda_device else args.cuda_device
device_string = cuda_device if torch.cuda.is_available() and not args.cpu else 'mps' if torch.backends.mps.is_available() and not args.cpu else 'cpu'
device = torch.device(device_string)
torch_dtype = torch.float32 if device_string != cuda_device  else torch.float16

if not torch.cuda.is_available() and not args.cpu:
    print(f"{Fore.YELLOW}{Style.BRIGHT}torch-cuda is not supported on this device.{Style.RESET_ALL}")
    if not torch.backends.mps.is_available() and not args.cpu:
        print(f"{Fore.YELLOW}{Style.BRIGHT}torch-mps is not supported on this device.{Style.RESET_ALL}")


print(f"{Fore.GREEN}{Style.BRIGHT}Using torch device: {device_string}{Style.RESET_ALL}")

if "caption" in modules:
    print("Initializing an image captioning model...")
    captioning_processor = AutoProcessor.from_pretrained(captioning_model)
    if "blip" in captioning_model:
        captioning_transformer = BlipForConditionalGeneration.from_pretrained(
            captioning_model, torch_dtype=torch_dtype
        ).to(device)
    else:
        captioning_transformer = AutoModelForCausalLM.from_pretrained(
            captioning_model, torch_dtype=torch_dtype
        ).to(device)

if "summarize" in modules:
    print("Initializing a text summarization model...")
    summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model)
    summarization_transformer = AutoModelForSeq2SeqLM.from_pretrained(
        summarization_model, torch_dtype=torch_dtype
    ).to(device)

if "classify" in modules:
    print("Initializing a sentiment classification pipeline...")
    classification_pipe = pipeline(
        "text-classification",
        model=classification_model,
        top_k=None,
        device=device,
        torch_dtype=torch_dtype,
    )

if "sd" in modules and not sd_use_remote:
    from diffusers import StableDiffusionPipeline
    from diffusers import EulerAncestralDiscreteScheduler

    print("Initializing Stable Diffusion pipeline...")
    sd_device_string = cuda_device if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
    sd_device = torch.device(sd_device_string)
    sd_torch_dtype = torch.float32 if sd_device_string != cuda_device else torch.float16
    sd_pipe = StableDiffusionPipeline.from_pretrained(
        sd_model, custom_pipeline="lpw_stable_diffusion", torch_dtype=sd_torch_dtype
    ).to(sd_device)
    sd_pipe.safety_checker = lambda images, clip_input: (images, False)
    sd_pipe.enable_attention_slicing()
    # pipe.scheduler = KarrasVeScheduler.from_config(pipe.scheduler.config)
    sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
        sd_pipe.scheduler.config
    )
elif "sd" in modules and sd_use_remote:
    print("Initializing Stable Diffusion connection")
    try:
        sd_remote = webuiapi.WebUIApi(
            host=sd_remote_host, port=sd_remote_port, use_https=sd_remote_ssl
        )
        if sd_remote_auth:
            username, password = sd_remote_auth.split(":")
            sd_remote.set_auth(username, password)
        sd_remote.util_wait_for_ready()
    except Exception as e:
        # remote sd from modules
        print(
            f"{Fore.RED}{Style.BRIGHT}Could not connect to remote SD backend at http{'s' if sd_remote_ssl else ''}://{sd_remote_host}:{sd_remote_port}! Disabling SD module...{Style.RESET_ALL}"
        )
        modules.remove("sd")

if "tts" in modules:
    print("tts module is deprecated. Please use silero-tts instead.")
    modules.remove("tts")
    modules.append("silero-tts")


if "silero-tts" in modules:
    if not os.path.exists(SILERO_SAMPLES_PATH):
        os.makedirs(SILERO_SAMPLES_PATH)
    print("Initializing Silero TTS server")
    from silero_api_server import tts

    tts_service = tts.SileroTtsService(SILERO_SAMPLES_PATH)
    if len(os.listdir(SILERO_SAMPLES_PATH)) == 0:
        print("Generating Silero TTS samples...")
        tts_service.update_sample_text(SILERO_SAMPLE_TEXT)
        tts_service.generate_samples()


if "edge-tts" in modules:
    print("Initializing Edge TTS client")
    import tts_edge as edge


if "chromadb" in modules:
    print("Initializing ChromaDB")
    import chromadb
    import posthog
    from chromadb.config import Settings
    from sentence_transformers import SentenceTransformer

    # Assume that the user wants in-memory unless a host is specified
    # Also disable chromadb telemetry
    posthog.capture = lambda *args, **kwargs: None
    if args.chroma_host is None:
        if args.chroma_persist:
            chromadb_client = chromadb.PersistentClient(path=args.chroma_folder, settings=Settings(anonymized_telemetry=False))
            print(f"ChromaDB is running in-memory with persistence. Persistence is stored in {args.chroma_folder}. Can be cleared by deleting the folder or purging db.")
        else:
            chromadb_client = chromadb.EphemeralClient(Settings(anonymized_telemetry=False))
            print(f"ChromaDB is running in-memory without persistence.")
    else:
        chroma_port=(
            args.chroma_port if args.chroma_port else DEFAULT_CHROMA_PORT
        )
        chromadb_client = chromadb.HttpClient(host=args.chroma_host, port=chroma_port, settings=Settings(anonymized_telemetry=False))
        print(f"ChromaDB is remotely configured at {args.chroma_host}:{chroma_port}")

    chromadb_embedder = SentenceTransformer(embedding_model, device=device_string)
    chromadb_embed_fn = lambda *args, **kwargs: chromadb_embedder.encode(*args, **kwargs).tolist()

    # Check if the db is connected and running, otherwise tell the user
    try:
        chromadb_client.heartbeat()
        print("Successfully pinged ChromaDB! Your client is successfully connected.")
    except:
        print("Could not ping ChromaDB! If you are running remotely, please check your host and port!")

# Flask init
app = Flask(__name__)
CORS(app)  # allow cross-domain requests
Compress(app) # compress responses
app.config["MAX_CONTENT_LENGTH"] = 100 * 1024 * 1024


def require_module(name):
    def wrapper(fn):
        @wraps(fn)
        def decorated_view(*args, **kwargs):
            if name not in modules:
                abort(403, "Module is disabled by config")
            return fn(*args, **kwargs)

        return decorated_view

    return wrapper


# AI stuff
def classify_text(text: str) -> list:
    output = classification_pipe(
        text,
        truncation=True,
        max_length=classification_pipe.model.config.max_position_embeddings,
    )[0]
    return sorted(output, key=lambda x: x["score"], reverse=True)


def caption_image(raw_image: Image, max_new_tokens: int = 20) -> str:
    inputs = captioning_processor(raw_image.convert("RGB"), return_tensors="pt").to(
        device, torch_dtype
    )
    outputs = captioning_transformer.generate(**inputs, max_new_tokens=max_new_tokens)
    caption = captioning_processor.decode(outputs[0], skip_special_tokens=True)
    return caption


def summarize_chunks(text: str, params: dict) -> str:
    try:
        return summarize(text, params)
    except IndexError:
        print(
            "Sequence length too large for model, cutting text in half and calling again"
        )
        new_params = params.copy()
        new_params["max_length"] = new_params["max_length"] // 2
        new_params["min_length"] = new_params["min_length"] // 2
        return summarize_chunks(
            text[: (len(text) // 2)], new_params
        ) + summarize_chunks(text[(len(text) // 2) :], new_params)


def summarize(text: str, params: dict) -> str:
    # Tokenize input
    inputs = summarization_tokenizer(text, return_tensors="pt").to(device)
    token_count = len(inputs[0])

    bad_words_ids = [
        summarization_tokenizer(bad_word, add_special_tokens=False).input_ids
        for bad_word in params["bad_words"]
    ]
    summary_ids = summarization_transformer.generate(
        inputs["input_ids"],
        num_beams=2,
        max_new_tokens=max(token_count, int(params["max_length"])),
        min_new_tokens=min(token_count, int(params["min_length"])),
        repetition_penalty=float(params["repetition_penalty"]),
        temperature=float(params["temperature"]),
        length_penalty=float(params["length_penalty"]),
        bad_words_ids=bad_words_ids,
    )
    summary = summarization_tokenizer.batch_decode(
        summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
    )[0]
    summary = normalize_string(summary)
    return summary


def normalize_string(input: str) -> str:
    output = " ".join(unicodedata.normalize("NFKC", input).strip().split())
    return output


def generate_image(data: dict) -> Image:
    prompt = normalize_string(f'{data["prompt_prefix"]} {data["prompt"]}')

    if sd_use_remote:
        image = sd_remote.txt2img(
            prompt=prompt,
            negative_prompt=data["negative_prompt"],
            sampler_name=data["sampler"],
            steps=data["steps"],
            cfg_scale=data["scale"],
            width=data["width"],
            height=data["height"],
            restore_faces=data["restore_faces"],
            enable_hr=data["enable_hr"],
            save_images=True,
            send_images=True,
            do_not_save_grid=False,
            do_not_save_samples=False,
        ).image
    else:
        image = sd_pipe(
            prompt=prompt,
            negative_prompt=data["negative_prompt"],
            num_inference_steps=data["steps"],
            guidance_scale=data["scale"],
            width=data["width"],
            height=data["height"],
        ).images[0]

    image.save("./debug.png")
    return image


def image_to_base64(image: Image, quality: int = 75) -> str:
    buffer = BytesIO()
    image.convert("RGB")
    image.save(buffer, format="JPEG", quality=quality)
    img_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
    return img_str


ignore_auth = []    
# [HF, Huggingface] Get password instead of text file.
api_key = os.environ.get("password")

def is_authorize_ignored(request):
    view_func = app.view_functions.get(request.endpoint)

    if view_func is not None:
        if view_func in ignore_auth:
            return True
    return False

@app.before_request
def before_request():
    # Request time measuring
    request.start_time = time.time()

    # Checks if an API key is present and valid, otherwise return unauthorized
    # The options check is required so CORS doesn't get angry
    try:
        if request.method != 'OPTIONS' and is_authorize_ignored(request) == False and getattr(request.authorization, 'token', '') != api_key:
            print(f"WARNING: Unauthorized API key access from {request.remote_addr}")
            if request.method == 'POST':
                print(f"Incoming POST request with {request.headers.get('Authorization')}")
            response = jsonify({ 'error': '401: Invalid API key' })
            response.status_code = 401
            return "https://(hf_name)-(space_name).hf.space/"
    except Exception as e:
        print(f"API key check error: {e}")
        return "https://(hf_name)-(space_name).hf.space/"


@app.after_request
def after_request(response):
    duration = time.time() - request.start_time
    response.headers["X-Request-Duration"] = str(duration)
    return response


@app.route("/", methods=["GET"])
def index():
    with open("./README.md", "r", encoding="utf8") as f:
        content = f.read()
    return render_template_string(markdown.markdown(content, extensions=["tables"]))


@app.route("/api/extensions", methods=["GET"])
def get_extensions():
    extensions = dict(
        {
            "extensions": [
                {
                    "name": "not-supported",
                    "metadata": {
                        "display_name": """<span style="white-space:break-spaces;">Extensions serving using Extensions API is no longer supported. Please update the mod from: <a href="https://github.com/Cohee1207/SillyTavern">https://github.com/Cohee1207/SillyTavern</a></span>""",
                        "requires": [],
                        "assets": [],
                    },
                }
            ]
        }
    )
    return jsonify(extensions)


@app.route("/api/caption", methods=["POST"])
@require_module("caption")
def api_caption():
    data = request.get_json()

    if "image" not in data or not isinstance(data["image"], str):
        abort(400, '"image" is required')

    image = Image.open(BytesIO(base64.b64decode(data["image"])))
    image = image.convert("RGB")
    image.thumbnail((512, 512))
    caption = caption_image(image)
    thumbnail = image_to_base64(image)
    print("Caption:", caption, sep="\n")
    gc.collect()
    return jsonify({"caption": caption, "thumbnail": thumbnail})


@app.route("/api/summarize", methods=["POST"])
@require_module("summarize")
def api_summarize():
    data = request.get_json()

    if "text" not in data or not isinstance(data["text"], str):
        abort(400, '"text" is required')

    params = DEFAULT_SUMMARIZE_PARAMS.copy()

    if "params" in data and isinstance(data["params"], dict):
        params.update(data["params"])

    print("Summary input:", data["text"], sep="\n")
    summary = summarize_chunks(data["text"], params)
    print("Summary output:", summary, sep="\n")
    gc.collect()
    return jsonify({"summary": summary})


@app.route("/api/classify", methods=["POST"])
@require_module("classify")
def api_classify():
    data = request.get_json()

    if "text" not in data or not isinstance(data["text"], str):
        abort(400, '"text" is required')

    print("Classification input:", data["text"], sep="\n")
    classification = classify_text(data["text"])
    print("Classification output:", classification, sep="\n")
    gc.collect()
    return jsonify({"classification": classification})


@app.route("/api/classify/labels", methods=["GET"])
@require_module("classify")
def api_classify_labels():
    classification = classify_text("")
    labels = [x["label"] for x in classification]
    return jsonify({"labels": labels})


@app.route("/api/image", methods=["POST"])
@require_module("sd")
def api_image():
    required_fields = {
        "prompt": str,
    }

    optional_fields = {
        "steps": 30,
        "scale": 6,
        "sampler": "DDIM",
        "width": 512,
        "height": 512,
        "restore_faces": False,
        "enable_hr": False,
        "prompt_prefix": PROMPT_PREFIX,
        "negative_prompt": NEGATIVE_PROMPT,
    }

    data = request.get_json()

    # Check required fields
    for field, field_type in required_fields.items():
        if field not in data or not isinstance(data[field], field_type):
            abort(400, f'"{field}" is required')

    # Set optional fields to default values if not provided
    for field, default_value in optional_fields.items():
        type_match = (
            (int, float)
            if isinstance(default_value, (int, float))
            else type(default_value)
        )
        if field not in data or not isinstance(data[field], type_match):
            data[field] = default_value

    try:
        print("SD inputs:", data, sep="\n")
        image = generate_image(data)
        base64image = image_to_base64(image, quality=90)
        return jsonify({"image": base64image})
    except RuntimeError as e:
        abort(400, str(e))


@app.route("/api/image/model", methods=["POST"])
@require_module("sd")
def api_image_model_set():
    data = request.get_json()

    if not sd_use_remote:
        abort(400, "Changing model for local sd is not supported.")
    if "model" not in data or not isinstance(data["model"], str):
        abort(400, '"model" is required')

    old_model = sd_remote.util_get_current_model()
    sd_remote.util_set_model(data["model"], find_closest=False)
    # sd_remote.util_set_model(data['model'])
    sd_remote.util_wait_for_ready()
    new_model = sd_remote.util_get_current_model()

    return jsonify({"previous_model": old_model, "current_model": new_model})


@app.route("/api/image/model", methods=["GET"])
@require_module("sd")
def api_image_model_get():
    model = sd_model

    if sd_use_remote:
        model = sd_remote.util_get_current_model()

    return jsonify({"model": model})


@app.route("/api/image/models", methods=["GET"])
@require_module("sd")
def api_image_models():
    models = [sd_model]

    if sd_use_remote:
        models = sd_remote.util_get_model_names()

    return jsonify({"models": models})


@app.route("/api/image/samplers", methods=["GET"])
@require_module("sd")
def api_image_samplers():
    samplers = ["Euler a"]

    if sd_use_remote:
        samplers = [sampler["name"] for sampler in sd_remote.get_samplers()]

    return jsonify({"samplers": samplers})


@app.route("/api/modules", methods=["GET"])
def get_modules():
    return jsonify({"modules": modules})


@app.route("/api/tts/speakers", methods=["GET"])
@require_module("silero-tts")
def tts_speakers():
    voices = [
        {
            "name": speaker,
            "voice_id": speaker,
            "preview_url": f"{str(request.url_root)}api/tts/sample/{speaker}",
        }
        for speaker in tts_service.get_speakers()
    ]
    return jsonify(voices)

# Added fix for Silero not working as new files were unable to be created if one already existed. - Rolyat 7/7/23
@app.route("/api/tts/generate", methods=["POST"])
@require_module("silero-tts")
def tts_generate():
    voice = request.get_json()
    if "text" not in voice or not isinstance(voice["text"], str):
        abort(400, '"text" is required')
    if "speaker" not in voice or not isinstance(voice["speaker"], str):
        abort(400, '"speaker" is required')
    # Remove asterisks
    voice["text"] = voice["text"].replace("*", "")
    try:
        # Remove the destination file if it already exists
        if os.path.exists('test.wav'):
            os.remove('test.wav')

        audio = tts_service.generate(voice["speaker"], voice["text"])
        audio_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.basename(audio))

        os.rename(audio, audio_file_path)
        return send_file(audio_file_path, mimetype="audio/x-wav")
    except Exception as e:
        print(e)
        abort(500, voice["speaker"])


@app.route("/api/tts/sample/<speaker>", methods=["GET"])
@require_module("silero-tts")
def tts_play_sample(speaker: str):
    return send_from_directory(SILERO_SAMPLES_PATH, f"{speaker}.wav")


@app.route("/api/edge-tts/list", methods=["GET"])
@require_module("edge-tts")
def edge_tts_list():
    voices = edge.get_voices()
    return jsonify(voices)


@app.route("/api/edge-tts/generate", methods=["POST"])
@require_module("edge-tts")
def edge_tts_generate():
    data = request.get_json()
    if "text" not in data or not isinstance(data["text"], str):
        abort(400, '"text" is required')
    if "voice" not in data or not isinstance(data["voice"], str):
        abort(400, '"voice" is required')
    if "rate" in data and isinstance(data['rate'], int):
        rate = data['rate']
    else:
        rate = 0
    # Remove asterisks
    data["text"] = data["text"].replace("*", "")
    try:
        audio = edge.generate_audio(text=data["text"], voice=data["voice"], rate=rate)
        return Response(audio, mimetype="audio/mpeg")
    except Exception as e:
        print(e)
        abort(500, data["voice"])


@app.route("/api/chromadb", methods=["POST"])
@require_module("chromadb")
def chromadb_add_messages():
    data = request.get_json()
    if "chat_id" not in data or not isinstance(data["chat_id"], str):
        abort(400, '"chat_id" is required')
    if "messages" not in data or not isinstance(data["messages"], list):
        abort(400, '"messages" is required')

    chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
    collection = chromadb_client.get_or_create_collection(
        name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
    )

    documents = [m["content"] for m in data["messages"]]
    ids = [m["id"] for m in data["messages"]]
    metadatas = [
        {"role": m["role"], "date": m["date"], "meta": m.get("meta", "")}
        for m in data["messages"]
    ]

    collection.upsert(
        ids=ids,
        documents=documents,
        metadatas=metadatas,
    )

    return jsonify({"count": len(ids)})


@app.route("/api/chromadb/purge", methods=["POST"])
@require_module("chromadb")
def chromadb_purge():
    data = request.get_json()
    if "chat_id" not in data or not isinstance(data["chat_id"], str):
        abort(400, '"chat_id" is required')

    chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
    collection = chromadb_client.get_or_create_collection(
        name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
    )

    count = collection.count()
    collection.delete()
    print("ChromaDB embeddings deleted", count)
    return 'Ok', 200


@app.route("/api/chromadb/query", methods=["POST"])
@require_module("chromadb")
def chromadb_query():
    data = request.get_json()
    if "chat_id" not in data or not isinstance(data["chat_id"], str):
        abort(400, '"chat_id" is required')
    if "query" not in data or not isinstance(data["query"], str):
        abort(400, '"query" is required')

    if "n_results" not in data or not isinstance(data["n_results"], int):
        n_results = 1
    else:
        n_results = data["n_results"]

    chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
    collection = chromadb_client.get_or_create_collection(
        name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
    )

    if collection.count() == 0:
        print(f"Queried empty/missing collection for {repr(data['chat_id'])}.")
        return jsonify([])


    n_results = min(collection.count(), n_results)
    query_result = collection.query(
        query_texts=[data["query"]],
        n_results=n_results,
    )

    documents = query_result["documents"][0]
    ids = query_result["ids"][0]
    metadatas = query_result["metadatas"][0]
    distances = query_result["distances"][0]

    messages = [
        {
            "id": ids[i],
            "date": metadatas[i]["date"],
            "role": metadatas[i]["role"],
            "meta": metadatas[i]["meta"],
            "content": documents[i],
            "distance": distances[i],
        }
        for i in range(len(ids))
    ]

    return jsonify(messages)

@app.route("/api/chromadb/multiquery", methods=["POST"])
@require_module("chromadb")
def chromadb_multiquery():
    data = request.get_json()
    if "chat_list" not in data or not isinstance(data["chat_list"], list):
        abort(400, '"chat_list" is required and should be a list')
    if "query" not in data or not isinstance(data["query"], str):
        abort(400, '"query" is required')

    if "n_results" not in data or not isinstance(data["n_results"], int):
        n_results = 1
    else:
        n_results = data["n_results"]

    messages = []

    for chat_id in data["chat_list"]:
        if not isinstance(chat_id, str):
            continue

        try:
            chat_id_md5 = hashlib.md5(chat_id.encode()).hexdigest()
            collection = chromadb_client.get_collection(
                name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
            )

            # Skip this chat if the collection is empty
            if collection.count() == 0:
                continue

            n_results_per_chat = min(collection.count(), n_results)
            query_result = collection.query(
                query_texts=[data["query"]],
                n_results=n_results_per_chat,
            )
            documents = query_result["documents"][0]
            ids = query_result["ids"][0]
            metadatas = query_result["metadatas"][0]
            distances = query_result["distances"][0]

            chat_messages = [
                {
                    "id": ids[i],
                    "date": metadatas[i]["date"],
                    "role": metadatas[i]["role"],
                    "meta": metadatas[i]["meta"],
                    "content": documents[i],
                    "distance": distances[i],
                }
                for i in range(len(ids))
            ]

            messages.extend(chat_messages)
        except Exception as e:
            print(e)

    #remove duplicate msgs, filter down to the right number
    seen = set()
    messages = [d for d in messages if not (d['content'] in seen or seen.add(d['content']))]
    messages = sorted(messages, key=lambda x: x['distance'])[0:n_results]

    return jsonify(messages)


@app.route("/api/chromadb/export", methods=["POST"])
@require_module("chromadb")
def chromadb_export():
    data = request.get_json()
    if "chat_id" not in data or not isinstance(data["chat_id"], str):
        abort(400, '"chat_id" is required')

    chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
    try:
        collection = chromadb_client.get_collection(
            name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
        )
    except Exception as e:
        print(e)
        abort(400, "Chat collection not found in chromadb")

    collection_content = collection.get()
    documents = collection_content.get('documents', [])
    ids = collection_content.get('ids', [])
    metadatas = collection_content.get('metadatas', [])

    unsorted_content = [
        {
            "id": ids[i],
            "metadata": metadatas[i],
            "document": documents[i],
        }
        for i in range(len(ids))
    ]

    sorted_content = sorted(unsorted_content, key=lambda x: x['metadata']['date'])

    export = {
        "chat_id": data["chat_id"],
        "content": sorted_content
    }

    return jsonify(export)

@app.route("/api/chromadb/import", methods=["POST"])
@require_module("chromadb")
def chromadb_import():
    data = request.get_json()
    content = data['content']
    if "chat_id" not in data or not isinstance(data["chat_id"], str):
        abort(400, '"chat_id" is required')

    chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
    collection = chromadb_client.get_or_create_collection(
        name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
    )

    documents = [item['document'] for item in content]
    metadatas = [item['metadata'] for item in content]
    ids = [item['id'] for item in content]


    collection.upsert(documents=documents, metadatas=metadatas, ids=ids)
    print(f"Imported {len(ids)} (total {collection.count()}) content entries into {repr(data['chat_id'])}")

    return jsonify({"count": len(ids)})


if args.share:
    from flask_cloudflared import _run_cloudflared
    import inspect

    sig = inspect.signature(_run_cloudflared)
    sum = sum(
        1
        for param in sig.parameters.values()
        if param.kind == param.POSITIONAL_OR_KEYWORD
    )
    if sum > 1:
        metrics_port = randint(8100, 9000)
        cloudflare = _run_cloudflared(port, metrics_port)
    else:
        cloudflare = _run_cloudflared(port)
    print("Running on", cloudflare)

ignore_auth.append(tts_play_sample)
app.run(host=host, port=port)