Spaces:
Build error
Build error
File size: 5,274 Bytes
b93970c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
from modules.commons.common_layers import *
from modules.commons.common_layers import Embedding
from modules.fastspeech.tts_modules import FastspeechDecoder, DurationPredictor, LengthRegulator, PitchPredictor, \
EnergyPredictor, FastspeechEncoder
from utils.cwt import cwt2f0
from utils.hparams import hparams
from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0
from modules.fastspeech.fs2 import FastSpeech2
class FastspeechMIDIEncoder(FastspeechEncoder):
def forward_embedding(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding):
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(txt_tokens)
x = x + midi_embedding + midi_dur_embedding + slur_embedding
if hparams['use_pos_embed']:
if hparams.get('rel_pos') is not None and hparams['rel_pos']:
x = self.embed_positions(x)
else:
positions = self.embed_positions(txt_tokens)
x = x + positions
x = F.dropout(x, p=self.dropout, training=self.training)
return x
def forward(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding):
"""
:param txt_tokens: [B, T]
:return: {
'encoder_out': [T x B x C]
}
"""
encoder_padding_mask = txt_tokens.eq(self.padding_idx).data
x = self.forward_embedding(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding) # [B, T, H]
x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask)
return x
FS_ENCODERS = {
'fft': lambda hp, embed_tokens, d: FastspeechMIDIEncoder(
embed_tokens, hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'],
num_heads=hp['num_heads']),
}
class FastSpeech2MIDI(FastSpeech2):
def __init__(self, dictionary, out_dims=None):
super().__init__(dictionary, out_dims)
del self.encoder
self.encoder = FS_ENCODERS[hparams['encoder_type']](hparams, self.encoder_embed_tokens, self.dictionary)
self.midi_embed = Embedding(300, self.hidden_size, self.padding_idx)
self.midi_dur_layer = Linear(1, self.hidden_size)
self.is_slur_embed = Embedding(2, self.hidden_size)
def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False,
spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs):
ret = {}
midi_embedding = self.midi_embed(kwargs['pitch_midi'])
midi_dur_embedding, slur_embedding = 0, 0
if kwargs.get('midi_dur') is not None:
midi_dur_embedding = self.midi_dur_layer(kwargs['midi_dur'][:, :, None]) # [B, T, 1] -> [B, T, H]
if kwargs.get('is_slur') is not None:
slur_embedding = self.is_slur_embed(kwargs['is_slur'])
encoder_out = self.encoder(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding) # [B, T, C]
src_nonpadding = (txt_tokens > 0).float()[:, :, None]
# add ref style embed
# Not implemented
# variance encoder
var_embed = 0
# encoder_out_dur denotes encoder outputs for duration predictor
# in speech adaptation, duration predictor use old speaker embedding
if hparams['use_spk_embed']:
spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
elif hparams['use_spk_id']:
spk_embed_id = spk_embed
if spk_embed_dur_id is None:
spk_embed_dur_id = spk_embed_id
if spk_embed_f0_id is None:
spk_embed_f0_id = spk_embed_id
spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :]
spk_embed_dur = spk_embed_f0 = spk_embed
if hparams['use_split_spk_id']:
spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :]
spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :]
else:
spk_embed_dur = spk_embed_f0 = spk_embed = 0
# add dur
dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding
mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret)
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])
mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
# add pitch and energy embed
pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
if hparams['use_pitch_embed']:
pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
if hparams['use_energy_embed']:
decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret)
ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding
if skip_decoder:
return ret
ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)
return ret
|