File size: 7,270 Bytes
00e8269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd4195b
00e8269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch, torchvision
from torchvision import transforms
import numpy as np
import gradio as gr
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from model.network import ResNet18
import matplotlib.pyplot as plt
import PIL
import io
from PIL import Image

from model.network import *
from utils.gradio_utils import *
from augment.augment import *
from dataset.dataset import *



model = ResNet18(20, None)
model = model.load_from_checkpoint("resnet18.ckpt", map_location=torch.device("cpu"))
model.eval()

dataloader_args = dict(shuffle=True, batch_size=64)
_, test_transforms = get_transforms(mu, std)

test = CIFAR10Dataset(transform=test_transforms, train=False)
test_loader = torch.utils.data.DataLoader(test, **dataloader_args)

target_layers = [model.res_block2.conv[-1]]
targets = None
device = torch.device("cpu")

examples = get_examples()

def upload_image_inference(input_img, n_top_classes, transparency):

  org_img = input_img.copy()

  input_img = transform(input_img)
  input_img = input_img.unsqueeze(0)

  outputs = model(input_img)

  softmax = torch.nn.Softmax(dim=0)
  o = softmax(outputs.flatten())
  confidences = {classes[i]: float(o[i]) for i in range(n_top_classes)}
  _, prediction = torch.max(outputs, 1)

  cam = GradCAM(model=model, target_layers=target_layers)

  grayscale_cam = cam(input_tensor=input_img, targets=None)
  grayscale_cam = grayscale_cam[0, :]
  img = input_img.squeeze(0)
  img = inv_normalize(img)

  rgb_img = np.transpose(img.cpu(), (1, 2, 0))
  rgb_img = rgb_img.numpy()
  visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)

  return([confidences, [org_img, grayscale_cam, visualization]])


def misclass_gr(num_images, layer_val, transparency):
  images_list = misclassified_data[:num_images]

  images_list = [image_to_array(img, layer_val, transparency) for img in images_list]
  return(images_list)


def class_gr(num_images, layer_val, transparency):
  images_list = classified_data[:num_images]

  images_list = [image_to_array(img, layer_val, transparency) for img in images_list]
  return(images_list)


def image_to_array(input_img, layer_val, transparency=0.6):
  input_tensor = input_img[0]

  cam = GradCAM(model=model, target_layers=[model.res_block2.conv[-layer_val]])
  grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
  grayscale_cam = grayscale_cam[0, :]

  img = input_tensor.squeeze(0)
  img = inv_normalize(img)
  rgb_img = np.transpose(img, (1, 2, 0))
  rgb_img = rgb_img.numpy()

  visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True,
                                    image_weight=transparency)

  plt.imshow(visualization)
  plt.title(r"Correct: " + classes[input_img[1].item()] + '\n' + 'Output: ' + classes[input_img[2].item()])

  with io.BytesIO() as buffer:
      plt.savefig(buffer, format = "png")
      buffer.seek(0)
      image = Image.open(buffer)
      ar = np.asarray(image)

  return(ar)


def get_misclassified_data(model, device, test_loader):
  """
  Function to run the model on test set and return misclassified images
  :param model: Network Architecture
  :param device: CPU/GPU
  :param test_loader: DataLoader for test set
  """
  mis_count = 0
  correct_count = 0

  # Prepare the model for evaluation i.e. drop the dropout layer
  model.eval()
  # List to store misclassified Images
  misclassified_data, classified_data = [], []
  # Reset the gradients
  with torch.no_grad():
    # Extract images, labels in a batch
    for data, target in test_loader:
      # Migrate the data to the device
      data, target = data.to(device), target.to(device)
      # Extract single image, label from the batch
      for image, label in zip(data, target):
        # Add batch dimension to the image
        image = image.unsqueeze(0)
        # Get the model prediction on the image
        output = model(image)
        # Convert the output from one-hot encoding to a value
        pred = output.argmax(dim=1, keepdim=True)
        # If prediction is incorrect, append the data
        if pred != label:
          misclassified_data.append((image, label, pred))
          mis_count += 1
        else:
          classified_data.append((image, label, pred))
          correct_count += 1

        if ((mis_count>=20) and (correct_count>=20)):
          return ((classified_data, misclassified_data))


title = "CIFAR10 trained on ResNet18 (Pytorch Lightning) Model with GradCAM"
description = "A simple Gradio interface to infer on ResNet model, get GradCAM results for existing & new Images"

with gr.Blocks() as gradcam:
    classified_data, misclassified_data = get_misclassified_data(model, device, test_loader)

    gr.Markdown("Make Grad-Cam of uploaded image, or existing images.")
    with gr.Tab("Upload New Image"):
        upload_input = [gr.Image(shape=(32, 32)),
                        gr.Number(minimum=0, maximum=10, label='n Top Classes', value=3, precision=0),
                        gr.Slider(0, 1, label='Transparency', value=0.6)]

        upload_output = [gr.Label(label='Top Classes'),
                         gr.Gallery(label="Image | CAM | Image+CAM",
                                    show_label=True, elem_id="gallery1").style(columns=[3],
                                                                              rows=[1],
                                                                              object_fit="contain",
                                                                              height="auto")]
        button1 = gr.Button("Perform Inference")
        gr.Examples(
          examples=examples,
          inputs=upload_input,
          outputs=upload_output,
          fn=upload_image_inference,
          cache_examples=True,
    )


    with gr.Tab("View Class Activate Maps"):
      with gr.Row():
          with gr.Column():
            cam_input21 = [gr.Number(minimum=1, maximum=20, precision=0, value=3, label='View Correctly Classified CAM | Num Images'),
                          gr.Number(minimum=1, maximum=3, precision=0, value=1, label='(-) Target Layer'),
                          gr.Slider(0, 1, value=0.6, label='Transparency')]

            image_output21 = gr.Gallery(label="Images - Grad-CAM (correct)",
                                      show_label=True, elem_id="gallery21")
            button21 = gr.Button("View Images")

          with gr.Column():
            cam_input22 = [gr.Number(minimum=1, maximum=20, precision=0, value=3, label='View Misclassified CAM | Num Images'),
                          gr.Number(minimum=1, maximum=3,  precision=0, value=1, label='(-) Target Layer'),
                          gr.Slider(0, 1, value=0.6, label='Transparency')]

            image_output22 = gr.Gallery(label="Images - Grad-CAM (Misclassified)",
                                        show_label=True, elem_id="gallery22")
            button22 = gr.Button("View Images")

    button1.click(upload_image_inference, inputs=upload_input, outputs=upload_output)
    button21.click(class_gr, inputs=cam_input21, outputs=image_output21)
    button22.click(misclass_gr, inputs=cam_input22, outputs=image_output22)
    
    

gradcam.launch()