Spaces:
Sleeping
Sleeping
File size: 13,377 Bytes
330bd18 925a881 a5ee5dc a8bef62 c6140ce f7f39bd a9750b3 58d5604 a9750b3 d2e6746 a9750b3 330bd18 f7f39bd 129c500 b80895e 330bd18 8071afe 330bd18 8071afe 8fd819e 8071afe bd1d7fa 330bd18 839fa9b 8071afe 330bd18 839fa9b 330bd18 bd1d7fa 330bd18 bd1d7fa 8ed40d7 764da9e 20a87d9 ccc910d 407e9c5 daefe1f 407e9c5 8ed40d7 407e9c5 8ed40d7 966d40f 330bd18 ad2eea0 330bd18 8071afe 16c6824 1f558cf 6135fe6 8071afe 6135fe6 8b0046a 8071afe 8b0046a 8071afe 8fd819e 8ed40d7 92b286e 8ed40d7 8fd819e 8ed40d7 ad2eea0 966d40f 4ba2ab9 f7f39bd 330bd18 ad2eea0 713120b 7799043 713120b 55d576a 966d40f 330bd18 ad2eea0 9730052 0b47b7c 43d5a33 0d5d519 ad2eea0 330bd18 ad2eea0 330bd18 966d40f f5a084e 966d40f b9d404b fa286e7 0b47b7c 4ba2ab9 b36b389 daefe1f 1089ab2 4893152 daefe1f 407e9c5 0b47b7c e39cf31 4ba2ab9 8071afe 330bd18 8fd819e c6140ce 8071afe 21e951d c66a07c a0ee327 92b286e 330bd18 c6140ce 21e951d c6140ce 38ba01f a8bef62 38ba01f a8bef62 38ba01f a8bef62 c6140ce a8bef62 c6140ce a8bef62 38ba01f a8bef62 38ba01f eec574d 38ba01f f9a60f2 d2bff83 f9a60f2 d2bff83 38ba01f f9a60f2 ab79be3 fd27c98 8071afe d2bff83 8071afe a8bef62 330bd18 eec574d f7f39bd f5a084e f9a60f2 f7f39bd 330bd18 925a881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# import base64
# import pathlib
# import tempfile
import os
os.system("python -m unidic download")
import nltk
nltk.download('averaged_perceptron_tagger_eng')
nltk.download('punkt_tab')
from nltk import sent_tokenize
import gradio as gr
from espnet2.bin.tts_inference import Text2Speech
from espnet2.utils.types import str_or_none
lang = 'English'
tag = 'kan-bayashi/ljspeech_vits' #@param ["kan-bayashi/ljspeech_tacotron2", "kan-bayashi/ljspeech_fastspeech", "kan-bayashi/ljspeech_fastspeech2", "kan-bayashi/ljspeech_conformer_fastspeech2", "kan-bayashi/ljspeech_joint_finetune_conformer_fastspeech2_hifigan", "kan-bayashi/ljspeech_joint_train_conformer_fastspeech2_hifigan", "kan-bayashi/ljspeech_vits"] {type:"string"}
vocoder_tag = "none"
text2speech = Text2Speech.from_pretrained(
train_config="tts_model/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/config.yaml",
model_file="tts_model/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth",
vocoder_tag=str_or_none(vocoder_tag),
device="cuda",
# Only for Tacotron 2 & Transformer
threshold=0.5,
# Only for Tacotron 2
minlenratio=0.0,
maxlenratio=10.0,
use_att_constraint=False,
backward_window=1,
forward_window=3,
# Only for FastSpeech & FastSpeech2 & VITS
speed_control_alpha=1.0,
# Only for VITS
noise_scale=0.333,
noise_scale_dur=0.333,
)
# recorder_js = pathlib.Path('recorder.js').read_text()
# main_js = pathlib.Path('main.js').read_text()
# record_button_js = pathlib.Path('record_button.js').read_text().replace('let recorder_js = null;', recorder_js).replace(
# 'let main_js = null;', main_js)
# def save_base64_video(base64_string):
# base64_video = base64_string
# video_data = base64.b64decode(base64_video)
# with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
# temp_filename = temp_file.name
# temp_file.write(video_data)
# print(f"Temporary MP4 file saved as: {temp_filename}")
# return temp_filename
# import os
# os.system('python -m unidic download')
import numpy as np
from VAD.vad_iterator import VADIterator
import torch
import librosa
# from mlx_lm import load, stream_generate, generate
from LLM.chat import Chat
# from lightning_whisper_mlx import LightningWhisperMLX
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
TextIteratorStreamer,
)
# from melo.api import TTS
# You are a helpful and friendly AI assistant called Veda. You are polite, respectful, and aim to provide concise and complete responses of less than 15 words.
# LM_model, LM_tokenizer = load("mlx-community/SmolLM-360M-Instruct")
chat = Chat(2)
chat.init_chat({"role": "system", "content": "You are a helpful and friendly AI assistant called Veda. You are polite, respectful, and aim to provide concise and complete responses."})
user_role = "user"
# tts_model = TTS(language="EN_NEWEST", device="auto")
# speaker_id = tts_model.hps.data.spk2id["EN-Newest"]
blocksize = 512
with torch.no_grad():
wav = text2speech("Sid")["wav"]
# tts_model.tts_to_file("text", speaker_id, quiet=True)
dummy_input = torch.randn(
(3000),
dtype=getattr(torch, "float16"),
device="cpu",
).cpu().numpy()
import soundfile as sf
import kaldiio
from espnet2.bin.s2t_inference_ctc import Speech2TextGreedySearch
s2t = Speech2TextGreedySearch.from_pretrained(
"pyf98/owsm_ctc_v3.1_1B",
device="cuda",
generate_interctc_outputs=False,
lang_sym='<eng>',
task_sym='<asr>',
)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start_event.record()
speech = librosa.util.fix_length(dummy_input, size=(16000 * 30))
res = s2t(speech)
end_event.record()
torch.cuda.synchronize()
def int2float(sound):
"""
Taken from https://github.com/snakers4/silero-vad
"""
abs_max = np.abs(sound).max()
sound = sound.astype("float32")
if abs_max > 0:
sound *= 1 / 32768
sound = sound.squeeze() # depends on the use case
return sound
text_str=""
vad_output=None
audio_output = None
min_speech_ms=500
max_speech_ms=float("inf")
# ASR_model = LightningWhisperMLX(model="distil-large-v3", batch_size=6, quant=None)
# ASR_processor = AutoProcessor.from_pretrained("distil-whisper/distil-large-v3")
# ASR_model = AutoModelForSpeechSeq2Seq.from_pretrained(
# "distil-whisper/distil-large-v3",
# torch_dtype="float16",
# ).to("cpu")
access_token = os.environ.get("HF_TOKEN")
LM_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct", token=access_token)
LM_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-1B-Instruct", torch_dtype="float16", trust_remote_code=True, token=access_token
).to("cuda")
LM_pipe = pipeline(
"text-generation", model=LM_model, tokenizer=LM_tokenizer, device="cuda"
)
streamer = TextIteratorStreamer(
LM_tokenizer,
skip_prompt=True,
skip_special_tokens=True,
)
dummy_input_text = "Write me a poem about Machine Learning."
dummy_chat = [{"role": "user", "content": dummy_input_text}]
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start_event.record()
LM_pipe(
dummy_chat,
max_new_tokens=32,
min_new_tokens=0,
temperature=0.0,
do_sample=False,
streamer=streamer,
return_full_text=False,
)
for a in streamer:
print(a)
end_event.record()
torch.cuda.synchronize()
# vad_model, _ = torch.hub.load("snakers4/silero-vad:v4.0", "silero_vad")
# vad_iterator = VADIterator(
# vad_model,
# threshold=0.3,
# sampling_rate=16000,
# min_silence_duration_ms=250,
# speech_pad_ms=500,
# )
import webrtcvad
import time
def transcribe(stream, new_chunk):
sr, y = new_chunk
global text_str
global chat
global user_role
global audio_output
global vad_output
if stream is None:
stream=True
chat.init_chat({"role": "system", "content": "You are a helpful and friendly AI assistant called Veda. You should respond in a conversational style. You are polite, respectful, and aim to provide concise and complete responses of less than 20 words."})
text_str=""
audio_output = None
orig_sr=sr
audio_int16 = np.frombuffer(y, dtype=np.int16)
audio_float32 = int2float(audio_int16)
audio_float32=librosa.resample(audio_float32, orig_sr=sr, target_sr=16000)
sr=16000
print(sr)
print(audio_float32.shape)
# vad_output = vad_iterator(torch.from_numpy(audio_float32))
vad_count=0
for i in range(int(len(y)/960)):
vad = webrtcvad.Vad()
vad.set_mode(3)
if (vad.is_speech(y[i*960:(i+1)*960].tobytes(), orig_sr)):
vad_count+=1
print(vad_count)
if vad_output is None and vad_count>12:
vad_curr=True
if vad_output is None:
vad_output=[torch.from_numpy(audio_float32)]
else:
vad_output.append(torch.from_numpy(audio_float32))
elif vad_output is not None and vad_count>10:
vad_curr=True
if vad_output is None:
vad_output=[torch.from_numpy(audio_float32)]
else:
vad_output.append(torch.from_numpy(audio_float32))
else:
vad_curr=False
if vad_output is not None and vad_curr==False:
print("VAD: end of speech detected")
array = torch.cat(vad_output).cpu().numpy()
duration_ms = len(array) / sr * 1000
if (not(duration_ms < min_speech_ms or duration_ms > max_speech_ms)):
# input_features = ASR_processor(
# array, sampling_rate=16000, return_tensors="pt"
# ).input_features
# print(input_features)
# input_features = input_features.to("cpu", dtype=getattr(torch, "float16"))
# pred_ids = ASR_model.generate(input_features, max_new_tokens=128, min_new_tokens=0, num_beams=1, return_timestamps=False,task="transcribe",language="en")
# print(pred_ids)
# prompt = ASR_processor.batch_decode(
# pred_ids, skip_special_tokens=True, decode_with_timestamps=False
# )[0]
print(len(array))
array = librosa.util.fix_length(array, size=(16000 * 30))
print(len(array))
start_time = time.time()
prompt=" ".join(s2t(array)[0][0].split()[1:])
vad_output = None
if len(prompt.strip().split())<2:
text_str1=text_str
return stream, text_str1, audio_output
# prompt=transcriber({"sampling_rate": sr, "raw": array})["text"]
print(len(prompt.strip().split()))
print(prompt)
print("--- %s seconds ---" % (time.time() - start_time))
# prompt=ASR_model.transcribe(array)["text"].strip()
chat.append({"role": user_role, "content": prompt})
chat_messages = chat.to_list()
LM_pipe(
chat_messages,
max_new_tokens=256,
min_new_tokens=0,
temperature=0.0,
do_sample=False,
streamer=streamer,
return_full_text=False,
)
output=""
curr_output = ""
text_str = ""
for t in streamer:
output += t
curr_output += t
sentences=sent_tokenize(curr_output)
if len(sentences)>1:
print("--- %s seconds ---" % (time.time() - start_time))
print(sentences[0])
with torch.no_grad():
audio_chunk = text2speech(sentences[0])["wav"].view(-1).cpu().numpy()
# audio_chunk = tts_model.tts_to_file(text_str, speaker_id, quiet=True)
audio_chunk = (audio_chunk * 32768).astype(np.int16)
print(text2speech.fs)
audio_output=(text2speech.fs, audio_chunk)
print("okk")
# print(audio_chunk)
# print(audio_chunk.shape)
text_str=text_str+sentences[0]
print("--- %s seconds ---" % (time.time() - start_time))
yield (stream,text_str, audio_output)
time.sleep((len(audio_chunk)/text2speech.fs)-0.2)
curr_output = t
print("--- %s seconds ---" % (time.time() - start_time))
print(curr_output)
with torch.no_grad():
audio_chunk = text2speech(curr_output)["wav"].view(-1).cpu().numpy()
# audio_chunk = tts_model.tts_to_file(text_str, speaker_id, quiet=True)
audio_chunk = (audio_chunk * 32768).astype(np.int16)
print(text2speech.fs)
audio_output=(text2speech.fs, audio_chunk)
print("okk")
# print(audio_chunk)
text_str=output
print(audio_chunk.shape)
print("--- %s seconds ---" % (time.time() - start_time))
# yield (stream,output, audio_output)
time.sleep((len(audio_chunk)/text2speech.fs)-0.2)
curr_output = ""
generated_text = output
# torch.mps.empty_cache()
chat.append({"role": "assistant", "content": generated_text})
# text_str=generated_text
# import pdb;pdb.set_trace()
# with torch.no_grad():
# audio_chunk = text2speech(text_str)["wav"].view(-1).cpu().numpy()
# # audio_chunk = tts_model.tts_to_file(text_str, speaker_id, quiet=True)
# audio_chunk = (audio_chunk * 32768).astype(np.int16)
# print(text2speech.fs)
# audio_output=(text2speech.fs, audio_chunk)
# else:
# audio_output=None
text_str1=text_str
return (stream,text_str1, audio_output)
demo = gr.Interface(
transcribe,
["state", gr.Audio(sources=["microphone"], streaming=True, waveform_options=gr.WaveformOptions(sample_rate=16000))],
["state", "text", gr.Audio(label="Output", autoplay=True,visible=True,)],
live=True,
)
# with demo:
# start_button = gr.Button("Record Screen 🔴")
# video_component = gr.Video(interactive=True, show_share_button=True, include_audio=True)
# def toggle_button_label(returned_string):
# if returned_string.startswith("Record"):
# return gr.Button(value="Stop Recording ⚪"), None
# else:
# try:
# temp_filename = save_base64_video(returned_string)
# except Exception as e:
# return gr.Button(value="Record Screen 🔴"), gr.Warning(f'Failed to convert video to mp4:\n{e}')
# return gr.Button(value="Record Screen 🔴"), gr.Video(value=temp_filename, interactive=True,
# show_share_button=True)
# start_button.click(toggle_button_label, start_button, [start_button, video_component], js=record_button_js)
demo.launch("share=True")
|