File size: 13,761 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import json
import os
from typing import Any, Callable, Dict, List, Literal, Optional, Union, get_args

import httpx

import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.custom_httpx.http_handler import (
    AsyncHTTPHandler,
    HTTPHandler,
    get_async_httpx_client,
)
from litellm.types.utils import EmbeddingResponse

from ...base import BaseLLM
from ..common_utils import HuggingFaceError
from .transformation import HuggingFaceEmbeddingConfig

config = HuggingFaceEmbeddingConfig()

HF_HUB_URL = "https://huggingface.co"

hf_tasks_embeddings = Literal[  # pipeline tags + hf tei endpoints - https://huggingface.github.io/text-embeddings-inference/#/
    "sentence-similarity", "feature-extraction", "rerank", "embed", "similarity"
]


def get_hf_task_embedding_for_model(
    model: str, task_type: Optional[str], api_base: str
) -> Optional[str]:
    if task_type is not None:
        if task_type in get_args(hf_tasks_embeddings):
            return task_type
        else:
            raise Exception(
                "Invalid task_type={}. Expected one of={}".format(
                    task_type, hf_tasks_embeddings
                )
            )
    http_client = HTTPHandler(concurrent_limit=1)

    model_info = http_client.get(url=f"{api_base}/api/models/{model}")

    model_info_dict = model_info.json()

    pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)

    return pipeline_tag


async def async_get_hf_task_embedding_for_model(
    model: str, task_type: Optional[str], api_base: str
) -> Optional[str]:
    if task_type is not None:
        if task_type in get_args(hf_tasks_embeddings):
            return task_type
        else:
            raise Exception(
                "Invalid task_type={}. Expected one of={}".format(
                    task_type, hf_tasks_embeddings
                )
            )
    http_client = get_async_httpx_client(
        llm_provider=litellm.LlmProviders.HUGGINGFACE,
    )

    model_info = await http_client.get(url=f"{api_base}/api/models/{model}")

    model_info_dict = model_info.json()

    pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)

    return pipeline_tag


class HuggingFaceEmbedding(BaseLLM):
    _client_session: Optional[httpx.Client] = None
    _aclient_session: Optional[httpx.AsyncClient] = None

    def __init__(self) -> None:
        super().__init__()

    def _transform_input_on_pipeline_tag(
        self, input: List, pipeline_tag: Optional[str]
    ) -> dict:
        if pipeline_tag is None:
            return {"inputs": input}
        if pipeline_tag == "sentence-similarity" or pipeline_tag == "similarity":
            if len(input) < 2:
                raise HuggingFaceError(
                    status_code=400,
                    message="sentence-similarity requires 2+ sentences",
                )
            return {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
        elif pipeline_tag == "rerank":
            if len(input) < 2:
                raise HuggingFaceError(
                    status_code=400,
                    message="reranker requires 2+ sentences",
                )
            return {"inputs": {"query": input[0], "texts": input[1:]}}
        return {"inputs": input}  # default to feature-extraction pipeline tag

    async def _async_transform_input(
        self,
        model: str,
        task_type: Optional[str],
        embed_url: str,
        input: List,
        optional_params: dict,
    ) -> dict:
        hf_task = await async_get_hf_task_embedding_for_model(
            model=model, task_type=task_type, api_base=HF_HUB_URL
        )

        data = self._transform_input_on_pipeline_tag(input=input, pipeline_tag=hf_task)

        if len(optional_params.keys()) > 0:
            data["options"] = optional_params

        return data

    def _process_optional_params(self, data: dict, optional_params: dict) -> dict:
        special_options_keys = config.get_special_options_params()
        special_parameters_keys = [
            "min_length",
            "max_length",
            "top_k",
            "top_p",
            "temperature",
            "repetition_penalty",
            "max_time",
        ]

        for k, v in optional_params.items():
            if k in special_options_keys:
                data.setdefault("options", {})
                data["options"][k] = v
            elif k in special_parameters_keys:
                data.setdefault("parameters", {})
                data["parameters"][k] = v
            else:
                data[k] = v

        return data

    def _transform_input(
        self,
        input: List,
        model: str,
        call_type: Literal["sync", "async"],
        optional_params: dict,
        embed_url: str,
    ) -> dict:
        data: Dict = {}

        ## TRANSFORMATION ##
        if "sentence-transformers" in model:
            if len(input) == 0:
                raise HuggingFaceError(
                    status_code=400,
                    message="sentence transformers requires 2+ sentences",
                )
            data = {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
        else:
            data = {"inputs": input}

            task_type = optional_params.pop("input_type", None)

            if call_type == "sync":
                hf_task = get_hf_task_embedding_for_model(
                    model=model, task_type=task_type, api_base=HF_HUB_URL
                )
            elif call_type == "async":
                return self._async_transform_input(
                    model=model, task_type=task_type, embed_url=embed_url, input=input
                )  # type: ignore

            data = self._transform_input_on_pipeline_tag(
                input=input, pipeline_tag=hf_task
            )

        if len(optional_params.keys()) > 0:
            data = self._process_optional_params(
                data=data, optional_params=optional_params
            )

        return data

    def _process_embedding_response(
        self,
        embeddings: dict,
        model_response: EmbeddingResponse,
        model: str,
        input: List,
        encoding: Any,
    ) -> EmbeddingResponse:
        output_data = []
        if "similarities" in embeddings:
            for idx, embedding in embeddings["similarities"]:
                output_data.append(
                    {
                        "object": "embedding",
                        "index": idx,
                        "embedding": embedding,  # flatten list returned from hf
                    }
                )
        else:
            for idx, embedding in enumerate(embeddings):
                if isinstance(embedding, float):
                    output_data.append(
                        {
                            "object": "embedding",
                            "index": idx,
                            "embedding": embedding,  # flatten list returned from hf
                        }
                    )
                elif isinstance(embedding, list) and isinstance(embedding[0], float):
                    output_data.append(
                        {
                            "object": "embedding",
                            "index": idx,
                            "embedding": embedding,  # flatten list returned from hf
                        }
                    )
                else:
                    output_data.append(
                        {
                            "object": "embedding",
                            "index": idx,
                            "embedding": embedding[0][
                                0
                            ],  # flatten list returned from hf
                        }
                    )
        model_response.object = "list"
        model_response.data = output_data
        model_response.model = model
        input_tokens = 0
        for text in input:
            input_tokens += len(encoding.encode(text))

        setattr(
            model_response,
            "usage",
            litellm.Usage(
                prompt_tokens=input_tokens,
                completion_tokens=input_tokens,
                total_tokens=input_tokens,
                prompt_tokens_details=None,
                completion_tokens_details=None,
            ),
        )
        return model_response

    async def aembedding(
        self,
        model: str,
        input: list,
        model_response: litellm.utils.EmbeddingResponse,
        timeout: Union[float, httpx.Timeout],
        logging_obj: LiteLLMLoggingObj,
        optional_params: dict,
        api_base: str,
        api_key: Optional[str],
        headers: dict,
        encoding: Callable,
        client: Optional[AsyncHTTPHandler] = None,
    ):
        ## TRANSFORMATION ##
        data = self._transform_input(
            input=input,
            model=model,
            call_type="sync",
            optional_params=optional_params,
            embed_url=api_base,
        )

        ## LOGGING
        logging_obj.pre_call(
            input=input,
            api_key=api_key,
            additional_args={
                "complete_input_dict": data,
                "headers": headers,
                "api_base": api_base,
            },
        )
        ## COMPLETION CALL
        if client is None:
            client = get_async_httpx_client(
                llm_provider=litellm.LlmProviders.HUGGINGFACE,
            )

        response = await client.post(api_base, headers=headers, data=json.dumps(data))

        ## LOGGING
        logging_obj.post_call(
            input=input,
            api_key=api_key,
            additional_args={"complete_input_dict": data},
            original_response=response,
        )

        embeddings = response.json()

        if "error" in embeddings:
            raise HuggingFaceError(status_code=500, message=embeddings["error"])

        ## PROCESS RESPONSE ##
        return self._process_embedding_response(
            embeddings=embeddings,
            model_response=model_response,
            model=model,
            input=input,
            encoding=encoding,
        )

    def embedding(
        self,
        model: str,
        input: list,
        model_response: EmbeddingResponse,
        optional_params: dict,
        litellm_params: dict,
        logging_obj: LiteLLMLoggingObj,
        encoding: Callable,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        timeout: Union[float, httpx.Timeout] = httpx.Timeout(None),
        aembedding: Optional[bool] = None,
        client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
        headers={},
    ) -> EmbeddingResponse:
        super().embedding()
        headers = config.validate_environment(
            api_key=api_key,
            headers=headers,
            model=model,
            optional_params=optional_params,
            messages=[],
            litellm_params=litellm_params,
        )
        task_type = optional_params.pop("input_type", None)
        task = get_hf_task_embedding_for_model(
            model=model, task_type=task_type, api_base=HF_HUB_URL
        )
        # print_verbose(f"{model}, {task}")
        embed_url = ""
        if "https" in model:
            embed_url = model
        elif api_base:
            embed_url = api_base
        elif "HF_API_BASE" in os.environ:
            embed_url = os.getenv("HF_API_BASE", "")
        elif "HUGGINGFACE_API_BASE" in os.environ:
            embed_url = os.getenv("HUGGINGFACE_API_BASE", "")
        else:
            embed_url = (
                f"https://router.huggingface.co/hf-inference/pipeline/{task}/{model}"
            )

        ## ROUTING ##
        if aembedding is True:
            return self.aembedding(
                input=input,
                model_response=model_response,
                timeout=timeout,
                logging_obj=logging_obj,
                headers=headers,
                api_base=embed_url,  # type: ignore
                api_key=api_key,
                client=client if isinstance(client, AsyncHTTPHandler) else None,
                model=model,
                optional_params=optional_params,
                encoding=encoding,
            )

        ## TRANSFORMATION ##

        data = self._transform_input(
            input=input,
            model=model,
            call_type="sync",
            optional_params=optional_params,
            embed_url=embed_url,
        )

        ## LOGGING
        logging_obj.pre_call(
            input=input,
            api_key=api_key,
            additional_args={
                "complete_input_dict": data,
                "headers": headers,
                "api_base": embed_url,
            },
        )
        ## COMPLETION CALL
        if client is None or not isinstance(client, HTTPHandler):
            client = HTTPHandler(concurrent_limit=1)
        response = client.post(embed_url, headers=headers, data=json.dumps(data))

        ## LOGGING
        logging_obj.post_call(
            input=input,
            api_key=api_key,
            additional_args={"complete_input_dict": data},
            original_response=response,
        )

        embeddings = response.json()

        if "error" in embeddings:
            raise HuggingFaceError(status_code=500, message=embeddings["error"])

        ## PROCESS RESPONSE ##
        return self._process_embedding_response(
            embeddings=embeddings,
            model_response=model_response,
            model=model,
            input=input,
            encoding=encoding,
        )