File size: 11,642 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import enum
from typing import Any, List, Optional, Tuple, cast
from urllib.parse import urlparse

import httpx
from httpx import Response

import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.prompt_templates.common_utils import (
    _audio_or_image_in_message_content,
    convert_content_list_to_str,
)
from litellm.llms.base_llm.chat.transformation import LiteLLMLoggingObj
from litellm.llms.openai.common_utils import drop_params_from_unprocessable_entity_error
from litellm.llms.openai.openai import OpenAIConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ModelResponse, ProviderField
from litellm.utils import _add_path_to_api_base, supports_tool_choice


class AzureFoundryErrorStrings(str, enum.Enum):
    SET_EXTRA_PARAMETERS_TO_PASS_THROUGH = "Set extra-parameters to 'pass-through'"


class AzureAIStudioConfig(OpenAIConfig):
    def get_supported_openai_params(self, model: str) -> List:
        model_supports_tool_choice = True  # azure ai supports this by default
        if not supports_tool_choice(model=f"azure_ai/{model}"):
            model_supports_tool_choice = False
        supported_params = super().get_supported_openai_params(model)
        if not model_supports_tool_choice:
            filtered_supported_params = []
            for param in supported_params:
                if param != "tool_choice":
                    filtered_supported_params.append(param)
            return filtered_supported_params
        return supported_params

    def validate_environment(
        self,
        headers: dict,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
    ) -> dict:
        if api_base and self._should_use_api_key_header(api_base):
            headers["api-key"] = api_key
        else:
            headers["Authorization"] = f"Bearer {api_key}"

        return headers

    def _should_use_api_key_header(self, api_base: str) -> bool:
        """
        Returns True if the request should use `api-key` header for authentication.
        """
        parsed_url = urlparse(api_base)
        host = parsed_url.hostname
        if host and (
            host.endswith(".services.ai.azure.com")
            or host.endswith(".openai.azure.com")
        ):
            return True
        return False

    def get_complete_url(
        self,
        api_base: Optional[str],
        api_key: Optional[str],
        model: str,
        optional_params: dict,
        litellm_params: dict,
        stream: Optional[bool] = None,
    ) -> str:
        """
        Constructs a complete URL for the API request.

        Args:
        - api_base: Base URL, e.g.,
            "https://litellm8397336933.services.ai.azure.com"
            OR
            "https://litellm8397336933.services.ai.azure.com/models/chat/completions?api-version=2024-05-01-preview"
        - model: Model name.
        - optional_params: Additional query parameters, including "api_version".
        - stream: If streaming is required (optional).

        Returns:
        - A complete URL string, e.g.,
        "https://litellm8397336933.services.ai.azure.com/models/chat/completions?api-version=2024-05-01-preview"
        """
        if api_base is None:
            raise ValueError(
                f"api_base is required for Azure AI Studio. Please set the api_base parameter. Passed `api_base={api_base}`"
            )
        original_url = httpx.URL(api_base)

        # Extract api_version or use default
        api_version = cast(Optional[str], litellm_params.get("api_version"))

        # Create a new dictionary with existing params
        query_params = dict(original_url.params)

        # Add api_version if needed
        if "api-version" not in query_params and api_version:
            query_params["api-version"] = api_version

        # Add the path to the base URL
        if "services.ai.azure.com" in api_base:
            new_url = _add_path_to_api_base(
                api_base=api_base, ending_path="/models/chat/completions"
            )
        else:
            new_url = _add_path_to_api_base(
                api_base=api_base, ending_path="/chat/completions"
            )

        # Use the new query_params dictionary
        final_url = httpx.URL(new_url).copy_with(params=query_params)

        return str(final_url)

    def get_required_params(self) -> List[ProviderField]:
        """For a given provider, return it's required fields with a description"""
        return [
            ProviderField(
                field_name="api_key",
                field_type="string",
                field_description="Your Azure AI Studio API Key.",
                field_value="zEJ...",
            ),
            ProviderField(
                field_name="api_base",
                field_type="string",
                field_description="Your Azure AI Studio API Base.",
                field_value="https://Mistral-serverless.",
            ),
        ]

    def _transform_messages(
        self,
        messages: List[AllMessageValues],
        model: str,
    ) -> List:
        """
        - Azure AI Studio doesn't support content as a list. This handles:
            1. Transforms list content to a string.
            2. If message contains an image or audio, send as is (user-intended)
        """
        for message in messages:
            # Do nothing if the message contains an image or audio
            if _audio_or_image_in_message_content(message):
                continue

            texts = convert_content_list_to_str(message=message)
            if texts:
                message["content"] = texts
        return messages

    def _is_azure_openai_model(self, model: str, api_base: Optional[str]) -> bool:
        try:
            if "/" in model:
                model = model.split("/", 1)[1]
            if (
                model in litellm.open_ai_chat_completion_models
                or model in litellm.open_ai_text_completion_models
                or model in litellm.open_ai_embedding_models
            ):
                return True

        except Exception:
            return False
        return False

    def _get_openai_compatible_provider_info(
        self,
        model: str,
        api_base: Optional[str],
        api_key: Optional[str],
        custom_llm_provider: str,
    ) -> Tuple[Optional[str], Optional[str], str]:
        api_base = api_base or get_secret_str("AZURE_AI_API_BASE")
        dynamic_api_key = api_key or get_secret_str("AZURE_AI_API_KEY")

        if self._is_azure_openai_model(model=model, api_base=api_base):
            verbose_logger.debug(
                "Model={} is Azure OpenAI model. Setting custom_llm_provider='azure'.".format(
                    model
                )
            )
            custom_llm_provider = "azure"
        return api_base, dynamic_api_key, custom_llm_provider

    def transform_request(
        self,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        headers: dict,
    ) -> dict:
        extra_body = optional_params.pop("extra_body", {})
        if extra_body and isinstance(extra_body, dict):
            optional_params.update(extra_body)
        optional_params.pop("max_retries", None)
        return super().transform_request(
            model, messages, optional_params, litellm_params, headers
        )

    def transform_response(
        self,
        model: str,
        raw_response: Response,
        model_response: ModelResponse,
        logging_obj: LiteLLMLoggingObj,
        request_data: dict,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        encoding: Any,
        api_key: Optional[str] = None,
        json_mode: Optional[bool] = None,
    ) -> ModelResponse:
        model_response.model = f"azure_ai/{model}"
        return super().transform_response(
            model=model,
            raw_response=raw_response,
            model_response=model_response,
            logging_obj=logging_obj,
            request_data=request_data,
            messages=messages,
            optional_params=optional_params,
            litellm_params=litellm_params,
            encoding=encoding,
            api_key=api_key,
            json_mode=json_mode,
        )

    def should_retry_llm_api_inside_llm_translation_on_http_error(
        self, e: httpx.HTTPStatusError, litellm_params: dict
    ) -> bool:
        should_drop_params = litellm_params.get("drop_params") or litellm.drop_params
        error_text = e.response.text

        if should_drop_params and "Extra inputs are not permitted" in error_text:
            return True
        elif (
            "unknown field: parameter index is not a valid field" in error_text
        ):  # remove index from tool calls
            return True
        elif (
            AzureFoundryErrorStrings.SET_EXTRA_PARAMETERS_TO_PASS_THROUGH.value
            in error_text
        ):  # remove extra-parameters from tool calls
            return True
        return super().should_retry_llm_api_inside_llm_translation_on_http_error(
            e=e, litellm_params=litellm_params
        )

    @property
    def max_retry_on_unprocessable_entity_error(self) -> int:
        return 2

    def transform_request_on_unprocessable_entity_error(
        self, e: httpx.HTTPStatusError, request_data: dict
    ) -> dict:
        _messages = cast(Optional[List[AllMessageValues]], request_data.get("messages"))
        if (
            "unknown field: parameter index is not a valid field" in e.response.text
            and _messages is not None
        ):
            litellm.remove_index_from_tool_calls(
                messages=_messages,
            )
        elif (
            AzureFoundryErrorStrings.SET_EXTRA_PARAMETERS_TO_PASS_THROUGH.value
            in e.response.text
        ):
            request_data = self._drop_extra_params_from_request_data(
                request_data, e.response.text
            )
        data = drop_params_from_unprocessable_entity_error(e=e, data=request_data)
        return data

    def _drop_extra_params_from_request_data(
        self, request_data: dict, error_text: str
    ) -> dict:
        params_to_drop = self._extract_params_to_drop_from_error_text(error_text)
        if params_to_drop:
            for param in params_to_drop:
                if param in request_data:
                    request_data.pop(param, None)
        return request_data

    def _extract_params_to_drop_from_error_text(
        self, error_text: str
    ) -> Optional[List[str]]:
        """
        Error text looks like this"
            "Extra parameters ['stream_options', 'extra-parameters'] are not allowed when extra-parameters is not set or set to be 'error'.
        """
        import re

        # Extract parameters within square brackets
        match = re.search(r"\[(.*?)\]", error_text)
        if not match:
            return []

        # Parse the extracted string into a list of parameter names
        params_str = match.group(1)
        params = []
        for param in params_str.split(","):
            # Clean up the parameter name (remove quotes, spaces)
            clean_param = param.strip().strip("'").strip('"')
            if clean_param:
                params.append(clean_param)
        return params