Spaces:
Running
Running
File size: 25,177 Bytes
469eae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
# What is this?
## Helper utilities for token counting
import base64
import io
import struct
from typing import Callable, List, Literal, Optional, Tuple, Union
import tiktoken
import litellm
from litellm import verbose_logger
from litellm.constants import (
DEFAULT_IMAGE_HEIGHT,
DEFAULT_IMAGE_TOKEN_COUNT,
DEFAULT_IMAGE_WIDTH,
MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES,
MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES,
MAX_TILE_HEIGHT,
MAX_TILE_WIDTH,
)
from litellm.litellm_core_utils.default_encoding import encoding as default_encoding
from litellm.llms.custom_httpx.http_handler import _get_httpx_client
from litellm.types.llms.openai import (
AllMessageValues,
ChatCompletionNamedToolChoiceParam,
ChatCompletionToolParam,
OpenAIMessageContent,
)
from litellm.types.utils import SelectTokenizerResponse
def get_modified_max_tokens(
model: str,
base_model: str,
messages: Optional[List[AllMessageValues]],
user_max_tokens: Optional[int],
buffer_perc: Optional[float],
buffer_num: Optional[float],
) -> Optional[int]:
"""
Params:
Returns the user's max output tokens, adjusted for:
- the size of input - for models where input + output can't exceed X
- model max output tokens - for models where there is a separate output token limit
"""
try:
if user_max_tokens is None:
return None
## MODEL INFO
_model_info = litellm.get_model_info(model=model)
max_output_tokens = litellm.get_max_tokens(
model=base_model
) # assume min context window is 4k tokens
## UNKNOWN MAX OUTPUT TOKENS - return user defined amount
if max_output_tokens is None:
return user_max_tokens
input_tokens = litellm.token_counter(model=base_model, messages=messages)
# token buffer
if buffer_perc is None:
buffer_perc = 0.1
if buffer_num is None:
buffer_num = 10
token_buffer = max(
buffer_perc * input_tokens, buffer_num
) # give at least a 10 token buffer. token counting can be imprecise.
input_tokens += int(token_buffer)
verbose_logger.debug(
f"max_output_tokens: {max_output_tokens}, user_max_tokens: {user_max_tokens}"
)
## CASE 1: model input + output can't exceed X - happens when max input = max output, e.g. gpt-3.5-turbo
if _model_info["max_input_tokens"] == max_output_tokens:
verbose_logger.debug(
f"input_tokens: {input_tokens}, max_output_tokens: {max_output_tokens}"
)
if input_tokens > max_output_tokens:
pass # allow call to fail normally - don't set max_tokens to negative.
elif (
user_max_tokens + input_tokens > max_output_tokens
): # we can still modify to keep it positive but below the limit
verbose_logger.debug(
f"MODIFYING MAX TOKENS - user_max_tokens={user_max_tokens}, input_tokens={input_tokens}, max_output_tokens={max_output_tokens}"
)
user_max_tokens = int(max_output_tokens - input_tokens)
## CASE 2: user_max_tokens> model max output tokens
elif user_max_tokens > max_output_tokens:
user_max_tokens = max_output_tokens
verbose_logger.debug(
f"litellm.litellm_core_utils.token_counter.py::get_modified_max_tokens() - user_max_tokens: {user_max_tokens}"
)
return user_max_tokens
except Exception as e:
verbose_logger.error(
"litellm.litellm_core_utils.token_counter.py::get_modified_max_tokens() - Error while checking max token limit: {}\nmodel={}, base_model={}".format(
str(e), model, base_model
)
)
return user_max_tokens
def resize_image_high_res(
width: int,
height: int,
) -> Tuple[int, int]:
# Maximum dimensions for high res mode
max_short_side = MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES
max_long_side = MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES
# Return early if no resizing is needed
if (
width <= MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES
and height <= MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES
):
return width, height
# Determine the longer and shorter sides
longer_side = max(width, height)
shorter_side = min(width, height)
# Calculate the aspect ratio
aspect_ratio = longer_side / shorter_side
# Resize based on the short side being 768px
if width <= height: # Portrait or square
resized_width = max_short_side
resized_height = int(resized_width * aspect_ratio)
# if the long side exceeds the limit after resizing, adjust both sides accordingly
if resized_height > max_long_side:
resized_height = max_long_side
resized_width = int(resized_height / aspect_ratio)
else: # Landscape
resized_height = max_short_side
resized_width = int(resized_height * aspect_ratio)
# if the long side exceeds the limit after resizing, adjust both sides accordingly
if resized_width > max_long_side:
resized_width = max_long_side
resized_height = int(resized_width / aspect_ratio)
return resized_width, resized_height
# Test the function with the given example
def calculate_tiles_needed(
resized_width,
resized_height,
tile_width=MAX_TILE_WIDTH,
tile_height=MAX_TILE_HEIGHT,
):
tiles_across = (resized_width + tile_width - 1) // tile_width
tiles_down = (resized_height + tile_height - 1) // tile_height
total_tiles = tiles_across * tiles_down
return total_tiles
def get_image_type(image_data: bytes) -> Union[str, None]:
"""take an image (really only the first ~100 bytes max are needed)
and return 'png' 'gif' 'jpeg' 'webp' 'heic' or None. method added to
allow deprecation of imghdr in 3.13"""
if image_data[0:8] == b"\x89\x50\x4e\x47\x0d\x0a\x1a\x0a":
return "png"
if image_data[0:4] == b"GIF8" and image_data[5:6] == b"a":
return "gif"
if image_data[0:3] == b"\xff\xd8\xff":
return "jpeg"
if image_data[4:8] == b"ftyp":
return "heic"
if image_data[0:4] == b"RIFF" and image_data[8:12] == b"WEBP":
return "webp"
return None
def get_image_dimensions(
data: str,
) -> Tuple[int, int]:
"""
Async Function to get the dimensions of an image from a URL or base64 encoded string.
Args:
data (str): The URL or base64 encoded string of the image.
Returns:
Tuple[int, int]: The width and height of the image.
"""
img_data = None
try:
# Try to open as URL
client = _get_httpx_client()
response = client.get(data)
img_data = response.read()
except Exception:
# If not URL, assume it's base64
_header, encoded = data.split(",", 1)
img_data = base64.b64decode(encoded)
img_type = get_image_type(img_data)
if img_type == "png":
w, h = struct.unpack(">LL", img_data[16:24])
return w, h
elif img_type == "gif":
w, h = struct.unpack("<HH", img_data[6:10])
return w, h
elif img_type == "jpeg":
with io.BytesIO(img_data) as fhandle:
fhandle.seek(0)
size = 2
ftype = 0
while not 0xC0 <= ftype <= 0xCF or ftype in (0xC4, 0xC8, 0xCC):
fhandle.seek(size, 1)
byte = fhandle.read(1)
while ord(byte) == 0xFF:
byte = fhandle.read(1)
ftype = ord(byte)
size = struct.unpack(">H", fhandle.read(2))[0] - 2
fhandle.seek(1, 1)
h, w = struct.unpack(">HH", fhandle.read(4))
return w, h
elif img_type == "webp":
# For WebP, the dimensions are stored at different offsets depending on the format
# Check for VP8X (extended format)
if img_data[12:16] == b"VP8X":
w = struct.unpack("<I", img_data[24:27] + b"\x00")[0] + 1
h = struct.unpack("<I", img_data[27:30] + b"\x00")[0] + 1
return w, h
# Check for VP8 (lossy format)
elif img_data[12:16] == b"VP8 ":
w = struct.unpack("<H", img_data[26:28])[0] & 0x3FFF
h = struct.unpack("<H", img_data[28:30])[0] & 0x3FFF
return w, h
# Check for VP8L (lossless format)
elif img_data[12:16] == b"VP8L":
bits = struct.unpack("<I", img_data[21:25])[0]
w = (bits & 0x3FFF) + 1
h = ((bits >> 14) & 0x3FFF) + 1
return w, h
# return sensible default image dimensions if unable to get dimensions
return DEFAULT_IMAGE_WIDTH, DEFAULT_IMAGE_HEIGHT
def calculate_img_tokens(
data,
mode: Literal["low", "high", "auto"] = "auto",
base_tokens: int = 85, # openai default - https://openai.com/pricing
use_default_image_token_count: bool = False,
):
"""
Calculate the number of tokens for an image.
Args:
data (str): The URL or base64 encoded string of the image.
mode (Literal["low", "high", "auto"]): The mode to use for calculating the number of tokens.
base_tokens (int): The base number of tokens for an image.
use_default_image_token_count (bool): When True, will NOT make a GET request to the image URL and instead return the default image dimensions.
Returns:
int: The number of tokens for the image.
"""
if use_default_image_token_count:
verbose_logger.debug(
"Using default image token count: {}".format(DEFAULT_IMAGE_TOKEN_COUNT)
)
return DEFAULT_IMAGE_TOKEN_COUNT
if mode == "low" or mode == "auto":
return base_tokens
elif mode == "high":
# Run the async function using the helper
width, height = get_image_dimensions(
data=data,
)
resized_width, resized_height = resize_image_high_res(
width=width, height=height
)
tiles_needed_high_res = calculate_tiles_needed(
resized_width=resized_width, resized_height=resized_height
)
tile_tokens = (base_tokens * 2) * tiles_needed_high_res
total_tokens = base_tokens + tile_tokens
return total_tokens
TokenCounterFunction = Callable[[str], int]
"""
Type for a function that counts tokens in a string.
"""
class _MessageCountParams:
"""
A class to hold the parameters for counting tokens in messages.
"""
def __init__(
self,
model: str,
custom_tokenizer: Optional[Union[dict, SelectTokenizerResponse]],
):
from litellm.utils import print_verbose
actual_model = _fix_model_name(model)
if actual_model == "gpt-3.5-turbo-0301":
self.tokens_per_message = (
4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
)
self.tokens_per_name = -1 # if there's a name, the role is omitted
elif actual_model in litellm.open_ai_chat_completion_models:
self.tokens_per_message = 3
self.tokens_per_name = 1
elif actual_model in litellm.azure_llms:
self.tokens_per_message = 3
self.tokens_per_name = 1
else:
print_verbose(f"Warning: unknown model {model}. Using default token params.")
self.tokens_per_message = 3
self.tokens_per_name = 1
self.count_function = _get_count_function(model, custom_tokenizer)
def token_counter(
model="",
custom_tokenizer: Optional[Union[dict, SelectTokenizerResponse]] = None,
text: Optional[Union[str, List[str]]] = None,
messages: Optional[List[AllMessageValues]] = None,
count_response_tokens: Optional[bool] = False,
tools: Optional[List[ChatCompletionToolParam]] = None,
tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None,
use_default_image_token_count: Optional[bool] = False,
default_token_count: Optional[int] = None,
) -> int:
"""
Count the number of tokens in a given text using a specified model.
Args:
model (str): The name of the model to use for tokenization. Default is an empty string.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The raw text string to be passed to the model. Default is None.
messages (Optional[List[AllMessageValues]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
count_response_tokens (Optional[bool]): set to True to indicate we are processing a stream response.
tools (Optional[List[ChatCompletionToolParam]]): The available tools. Default is None.
tool_choice (Optional[ChatCompletionNamedToolChoiceParam]): The tool choice. Default is None.
use_default_image_token_count (Optional[bool]): When True, will NOT make a GET request to the image URL and instead return the default image dimensions. Default is False.
default_token_count (Optional[int]): The default number of tokens to return for a message block, if an error occurs. Default is None.
Returns:
int: The number of tokens in the text.
"""
if text is not None and messages is not None:
raise ValueError("text and messages cannot both be set")
if use_default_image_token_count is None:
use_default_image_token_count = False
if text is not None:
if tools or tool_choice:
raise ValueError("tools or tool_choice cannot be set if using text")
if isinstance(text, List):
text_to_count = "".join(t for t in text if isinstance(t, str))
elif isinstance(text, str):
text_to_count = text
count_function = _get_count_function(model, custom_tokenizer)
num_tokens = count_function(text_to_count)
elif messages is not None:
params = _MessageCountParams(model, custom_tokenizer)
num_tokens = _count_messages(
params, messages, use_default_image_token_count, default_token_count
)
if count_response_tokens is False:
includes_system_message = any(
[message.get("role", None) == "system" for message in messages]
)
num_tokens += _count_extra(
params.count_function, tools, tool_choice, includes_system_message
)
else:
raise ValueError("Either text or messages must be provided")
return num_tokens
def _count_messages(
params: _MessageCountParams,
messages: List[AllMessageValues],
use_default_image_token_count: bool,
default_token_count: Optional[int],
) -> int:
"""
Count the number of tokens in a list of messages.
Args:
params (_MessageCountParams): The parameters for counting tokens.
messages (List[AllMessageValues]): The list of messages to count tokens in.
use_default_image_token_count (bool): When True, will NOT make a GET request to the image URL and instead return the default image dimensions.
default_token_count (Optional[int]): The default number of tokens to return for a message block, if an error occurs.
"""
num_tokens = 0
for message in messages:
num_tokens += params.tokens_per_message
for key, value in message.items():
if value is None:
pass
elif key == "tool_calls":
if isinstance(value, List):
for tool_call in value:
if "function" in tool_call:
function_arguments = tool_call["function"].get(
"arguments", []
)
num_tokens += params.count_function(str(function_arguments))
else:
raise ValueError(
f"Unsupported tool call {tool_call} must contain a function key"
)
else:
raise ValueError(
f"Unsupported type {type(value)} for key tool_calls in message {message}"
)
elif isinstance(value, str):
num_tokens += params.count_function(value)
if key == "name":
num_tokens += params.tokens_per_name
elif key == 'content' and isinstance(value, List):
num_tokens += _count_content_list(
params.count_function,
value,
use_default_image_token_count,
default_token_count,
)
else:
raise ValueError(
f"Unsupported type {type(value)} for key {key} in message {message}"
)
return num_tokens
def _count_extra(
count_function: TokenCounterFunction,
tools: Optional[List[ChatCompletionToolParam]],
tool_choice: Optional[ChatCompletionNamedToolChoiceParam],
includes_system_message: bool,
) -> int:
"""Count extra tokens for function definitions and tool choices.
Args:
count_function (TokenCounterFunction): The function to count tokens.
tools (Optional[List[ChatCompletionToolParam]]): The available tools.
tool_choice (Optional[ChatCompletionNamedToolChoiceParam]): The tool choice.
includes_system_message (bool): Whether the messages include a system message.
"""
num_tokens = 3 # every reply is primed with <|start|>assistant<|message|>
if tools:
num_tokens += count_function(_format_function_definitions(tools))
num_tokens += 9 # Additional tokens for function definition of tools
# If there's a system message and tools are present, subtract four tokens
if tools and includes_system_message:
num_tokens -= 4
# If tool_choice is 'none', add one token.
# If it's an object, add 4 + the number of tokens in the function name.
# If it's undefined or 'auto', don't add anything.
if tool_choice == "none":
num_tokens += 1
elif isinstance(tool_choice, dict):
num_tokens += 7
num_tokens += count_function(str(tool_choice["function"]["name"]))
return num_tokens
def _get_count_function(
model: Optional[str],
custom_tokenizer: Optional[Union[dict, SelectTokenizerResponse]] = None,
) -> TokenCounterFunction:
"""
Get the function to count tokens based on the model and custom tokenizer."""
from litellm.utils import _select_tokenizer, print_verbose
if model is not None or custom_tokenizer is not None:
tokenizer_json = custom_tokenizer or _select_tokenizer(model) # type: ignore
if tokenizer_json["type"] == "huggingface_tokenizer":
def count_tokens(text: str) -> int:
enc = tokenizer_json["tokenizer"].encode(text)
return len(enc.ids)
elif tokenizer_json["type"] == "openai_tokenizer":
model_to_use = _fix_model_name(model) # type: ignore
try:
if "gpt-4o" in model_to_use:
encoding = tiktoken.get_encoding("o200k_base")
else:
encoding = tiktoken.encoding_for_model(model_to_use)
except KeyError:
print_verbose("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
def count_tokens(text: str) -> int:
return len(encoding.encode(text))
else:
raise ValueError("Unsupported tokenizer type")
else:
def count_tokens(text: str) -> int:
return len(default_encoding.encode(text, disallowed_special=()))
return count_tokens
def _fix_model_name(model: str) -> str:
"""We normalize some model names to others"""
if model in litellm.azure_llms:
# azure llms use gpt-35-turbo instead of gpt-3.5-turbo π
return model.replace("-35", "-3.5")
elif model in litellm.open_ai_chat_completion_models:
return model # type: ignore
else:
return "gpt-3.5-turbo"
def _count_content_list(
count_function: TokenCounterFunction,
content_list: OpenAIMessageContent,
use_default_image_token_count: bool,
default_token_count: Optional[int],
) -> int:
"""
Get the number of tokens from a list of content.
"""
try:
num_tokens = 0
for c in content_list:
if isinstance(c, str):
num_tokens += count_function(c)
elif c["type"] == "text":
num_tokens += count_function(c["text"])
elif c["type"] == "image_url":
if isinstance(c["image_url"], dict):
image_url_dict = c["image_url"]
detail = image_url_dict.get("detail", "auto")
if detail not in ["low", "high", "auto"]:
raise ValueError(
f"Invalid detail value: {detail}. Expected 'low', 'high', or 'auto'."
)
url = image_url_dict.get("url")
num_tokens += calculate_img_tokens(
data=url,
mode=detail, # type: ignore
use_default_image_token_count=use_default_image_token_count,
)
elif isinstance(c["image_url"], str):
image_url_str = c["image_url"]
num_tokens += calculate_img_tokens(
data=image_url_str,
mode="auto",
use_default_image_token_count=use_default_image_token_count,
)
else:
raise ValueError(
f"Invalid image_url type: {type(c['image_url'])}. Expected str or dict."
)
else:
raise ValueError(
f"Invalid content type: {type(c)}. Expected str or dict."
)
return num_tokens
except Exception as e:
if default_token_count is not None:
return default_token_count
raise ValueError(
f"Error getting number of tokens from content list: {e}, default_token_count={default_token_count}"
)
def _format_function_definitions(tools):
"""Formats tool definitions in the format that OpenAI appears to use.
Based on https://github.com/forestwanglin/openai-java/blob/main/jtokkit/src/main/java/xyz/felh/openai/jtokkit/utils/TikTokenUtils.java
"""
lines = []
lines.append("namespace functions {")
lines.append("")
for tool in tools:
function = tool.get("function")
if function_description := function.get("description"):
lines.append(f"// {function_description}")
function_name = function.get("name")
parameters = function.get("parameters", {})
properties = parameters.get("properties")
if properties and properties.keys():
lines.append(f"type {function_name} = (_: {{")
lines.append(_format_object_parameters(parameters, 0))
lines.append("}) => any;")
else:
lines.append(f"type {function_name} = () => any;")
lines.append("")
lines.append("} // namespace functions")
return "\n".join(lines)
def _format_object_parameters(parameters, indent):
properties = parameters.get("properties")
if not properties:
return ""
required_params = parameters.get("required", [])
lines = []
for key, props in properties.items():
description = props.get("description")
if description:
lines.append(f"// {description}")
question = "?"
if required_params and key in required_params:
question = ""
lines.append(f"{key}{question}: {_format_type(props, indent)},")
return "\n".join([" " * max(0, indent) + line for line in lines])
def _format_type(props, indent):
type = props.get("type")
if type == "string":
if "enum" in props:
return " | ".join([f'"{item}"' for item in props["enum"]])
return "string"
elif type == "array":
# items is required, OpenAI throws an error if it's missing
return f"{_format_type(props['items'], indent)}[]"
elif type == "object":
return f"{{\n{_format_object_parameters(props, indent + 2)}\n}}"
elif type in ["integer", "number"]:
if "enum" in props:
return " | ".join([f'"{item}"' for item in props["enum"]])
return "number"
elif type == "boolean":
return "boolean"
elif type == "null":
return "null"
else:
# This is a guess, as an empty string doesn't yield the expected token count
return "any"
|