File size: 8,810 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import asyncio
import json
import os
import uuid
from datetime import datetime, timedelta, timezone
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from urllib.parse import quote

from litellm._logging import verbose_logger
from litellm.integrations.additional_logging_utils import AdditionalLoggingUtils
from litellm.integrations.gcs_bucket.gcs_bucket_base import GCSBucketBase
from litellm.proxy._types import CommonProxyErrors
from litellm.types.integrations.base_health_check import IntegrationHealthCheckStatus
from litellm.types.integrations.gcs_bucket import *
from litellm.types.utils import StandardLoggingPayload

if TYPE_CHECKING:
    from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
else:
    VertexBase = Any


class GCSBucketLogger(GCSBucketBase, AdditionalLoggingUtils):
    def __init__(self, bucket_name: Optional[str] = None) -> None:
        from litellm.proxy.proxy_server import premium_user

        super().__init__(bucket_name=bucket_name)

        # Init Batch logging settings
        self.log_queue: List[GCSLogQueueItem] = []
        self.batch_size = int(os.getenv("GCS_BATCH_SIZE", GCS_DEFAULT_BATCH_SIZE))
        self.flush_interval = int(
            os.getenv("GCS_FLUSH_INTERVAL", GCS_DEFAULT_FLUSH_INTERVAL_SECONDS)
        )
        asyncio.create_task(self.periodic_flush())
        self.flush_lock = asyncio.Lock()
        super().__init__(
            flush_lock=self.flush_lock,
            batch_size=self.batch_size,
            flush_interval=self.flush_interval,
        )
        AdditionalLoggingUtils.__init__(self)

        if premium_user is not True:
            raise ValueError(
                f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}"
            )

    #### ASYNC ####
    async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
        from litellm.proxy.proxy_server import premium_user

        if premium_user is not True:
            raise ValueError(
                f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}"
            )
        try:
            verbose_logger.debug(
                "GCS Logger: async_log_success_event logging kwargs: %s, response_obj: %s",
                kwargs,
                response_obj,
            )
            logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
                "standard_logging_object", None
            )
            if logging_payload is None:
                raise ValueError("standard_logging_object not found in kwargs")
            # Add to logging queue - this will be flushed periodically
            self.log_queue.append(
                GCSLogQueueItem(
                    payload=logging_payload, kwargs=kwargs, response_obj=response_obj
                )
            )

        except Exception as e:
            verbose_logger.exception(f"GCS Bucket logging error: {str(e)}")

    async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
        try:
            verbose_logger.debug(
                "GCS Logger: async_log_failure_event logging kwargs: %s, response_obj: %s",
                kwargs,
                response_obj,
            )

            logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
                "standard_logging_object", None
            )
            if logging_payload is None:
                raise ValueError("standard_logging_object not found in kwargs")
            # Add to logging queue - this will be flushed periodically
            self.log_queue.append(
                GCSLogQueueItem(
                    payload=logging_payload, kwargs=kwargs, response_obj=response_obj
                )
            )

        except Exception as e:
            verbose_logger.exception(f"GCS Bucket logging error: {str(e)}")

    async def async_send_batch(self):
        """
        Process queued logs in batch - sends logs to GCS Bucket


        GCS Bucket does not have a Batch endpoint to batch upload logs

        Instead, we
            - collect the logs to flush every `GCS_FLUSH_INTERVAL` seconds
            - during async_send_batch, we make 1 POST request per log to GCS Bucket

        """
        if not self.log_queue:
            return

        for log_item in self.log_queue:
            logging_payload = log_item["payload"]
            kwargs = log_item["kwargs"]
            response_obj = log_item.get("response_obj", None) or {}

            gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
                kwargs
            )

            headers = await self.construct_request_headers(
                vertex_instance=gcs_logging_config["vertex_instance"],
                service_account_json=gcs_logging_config["path_service_account"],
            )
            bucket_name = gcs_logging_config["bucket_name"]
            object_name = self._get_object_name(kwargs, logging_payload, response_obj)

            try:
                await self._log_json_data_on_gcs(
                    headers=headers,
                    bucket_name=bucket_name,
                    object_name=object_name,
                    logging_payload=logging_payload,
                )
            except Exception as e:
                # don't let one log item fail the entire batch
                verbose_logger.exception(
                    f"GCS Bucket error logging payload to GCS bucket: {str(e)}"
                )
                pass

        # Clear the queue after processing
        self.log_queue.clear()

    def _get_object_name(
        self, kwargs: Dict, logging_payload: StandardLoggingPayload, response_obj: Any
    ) -> str:
        """
        Get the object name to use for the current payload
        """
        current_date = self._get_object_date_from_datetime(datetime.now(timezone.utc))
        if logging_payload.get("error_str", None) is not None:
            object_name = self._generate_failure_object_name(
                request_date_str=current_date,
            )
        else:
            object_name = self._generate_success_object_name(
                request_date_str=current_date,
                response_id=response_obj.get("id", ""),
            )

        # used for testing
        _litellm_params = kwargs.get("litellm_params", None) or {}
        _metadata = _litellm_params.get("metadata", None) or {}
        if "gcs_log_id" in _metadata:
            object_name = _metadata["gcs_log_id"]

        return object_name

    async def get_request_response_payload(
        self,
        request_id: str,
        start_time_utc: Optional[datetime],
        end_time_utc: Optional[datetime],
    ) -> Optional[dict]:
        """
        Get the request and response payload for a given `request_id`
        Tries current day, next day, and previous day until it finds the payload
        """
        if start_time_utc is None:
            raise ValueError(
                "start_time_utc is required for getting a payload from GCS Bucket"
            )

        # Try current day, next day, and previous day
        dates_to_try = [
            start_time_utc,
            start_time_utc + timedelta(days=1),
            start_time_utc - timedelta(days=1),
        ]
        date_str = None
        for date in dates_to_try:
            try:
                date_str = self._get_object_date_from_datetime(datetime_obj=date)
                object_name = self._generate_success_object_name(
                    request_date_str=date_str,
                    response_id=request_id,
                )
                encoded_object_name = quote(object_name, safe="")
                response = await self.download_gcs_object(encoded_object_name)

                if response is not None:
                    loaded_response = json.loads(response)
                    return loaded_response
            except Exception as e:
                verbose_logger.debug(
                    f"Failed to fetch payload for date {date_str}: {str(e)}"
                )
                continue

        return None

    def _generate_success_object_name(
        self,
        request_date_str: str,
        response_id: str,
    ) -> str:
        return f"{request_date_str}/{response_id}"

    def _generate_failure_object_name(
        self,
        request_date_str: str,
    ) -> str:
        return f"{request_date_str}/failure-{uuid.uuid4().hex}"

    def _get_object_date_from_datetime(self, datetime_obj: datetime) -> str:
        return datetime_obj.strftime("%Y-%m-%d")

    async def async_health_check(self) -> IntegrationHealthCheckStatus:
        raise NotImplementedError("GCS Bucket does not support health check")