Spaces:
Sleeping
Sleeping
File size: 8,810 Bytes
469eae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import asyncio
import json
import os
import uuid
from datetime import datetime, timedelta, timezone
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from urllib.parse import quote
from litellm._logging import verbose_logger
from litellm.integrations.additional_logging_utils import AdditionalLoggingUtils
from litellm.integrations.gcs_bucket.gcs_bucket_base import GCSBucketBase
from litellm.proxy._types import CommonProxyErrors
from litellm.types.integrations.base_health_check import IntegrationHealthCheckStatus
from litellm.types.integrations.gcs_bucket import *
from litellm.types.utils import StandardLoggingPayload
if TYPE_CHECKING:
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
else:
VertexBase = Any
class GCSBucketLogger(GCSBucketBase, AdditionalLoggingUtils):
def __init__(self, bucket_name: Optional[str] = None) -> None:
from litellm.proxy.proxy_server import premium_user
super().__init__(bucket_name=bucket_name)
# Init Batch logging settings
self.log_queue: List[GCSLogQueueItem] = []
self.batch_size = int(os.getenv("GCS_BATCH_SIZE", GCS_DEFAULT_BATCH_SIZE))
self.flush_interval = int(
os.getenv("GCS_FLUSH_INTERVAL", GCS_DEFAULT_FLUSH_INTERVAL_SECONDS)
)
asyncio.create_task(self.periodic_flush())
self.flush_lock = asyncio.Lock()
super().__init__(
flush_lock=self.flush_lock,
batch_size=self.batch_size,
flush_interval=self.flush_interval,
)
AdditionalLoggingUtils.__init__(self)
if premium_user is not True:
raise ValueError(
f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}"
)
#### ASYNC ####
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
from litellm.proxy.proxy_server import premium_user
if premium_user is not True:
raise ValueError(
f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}"
)
try:
verbose_logger.debug(
"GCS Logger: async_log_success_event logging kwargs: %s, response_obj: %s",
kwargs,
response_obj,
)
logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
if logging_payload is None:
raise ValueError("standard_logging_object not found in kwargs")
# Add to logging queue - this will be flushed periodically
self.log_queue.append(
GCSLogQueueItem(
payload=logging_payload, kwargs=kwargs, response_obj=response_obj
)
)
except Exception as e:
verbose_logger.exception(f"GCS Bucket logging error: {str(e)}")
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
try:
verbose_logger.debug(
"GCS Logger: async_log_failure_event logging kwargs: %s, response_obj: %s",
kwargs,
response_obj,
)
logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
if logging_payload is None:
raise ValueError("standard_logging_object not found in kwargs")
# Add to logging queue - this will be flushed periodically
self.log_queue.append(
GCSLogQueueItem(
payload=logging_payload, kwargs=kwargs, response_obj=response_obj
)
)
except Exception as e:
verbose_logger.exception(f"GCS Bucket logging error: {str(e)}")
async def async_send_batch(self):
"""
Process queued logs in batch - sends logs to GCS Bucket
GCS Bucket does not have a Batch endpoint to batch upload logs
Instead, we
- collect the logs to flush every `GCS_FLUSH_INTERVAL` seconds
- during async_send_batch, we make 1 POST request per log to GCS Bucket
"""
if not self.log_queue:
return
for log_item in self.log_queue:
logging_payload = log_item["payload"]
kwargs = log_item["kwargs"]
response_obj = log_item.get("response_obj", None) or {}
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
kwargs
)
headers = await self.construct_request_headers(
vertex_instance=gcs_logging_config["vertex_instance"],
service_account_json=gcs_logging_config["path_service_account"],
)
bucket_name = gcs_logging_config["bucket_name"]
object_name = self._get_object_name(kwargs, logging_payload, response_obj)
try:
await self._log_json_data_on_gcs(
headers=headers,
bucket_name=bucket_name,
object_name=object_name,
logging_payload=logging_payload,
)
except Exception as e:
# don't let one log item fail the entire batch
verbose_logger.exception(
f"GCS Bucket error logging payload to GCS bucket: {str(e)}"
)
pass
# Clear the queue after processing
self.log_queue.clear()
def _get_object_name(
self, kwargs: Dict, logging_payload: StandardLoggingPayload, response_obj: Any
) -> str:
"""
Get the object name to use for the current payload
"""
current_date = self._get_object_date_from_datetime(datetime.now(timezone.utc))
if logging_payload.get("error_str", None) is not None:
object_name = self._generate_failure_object_name(
request_date_str=current_date,
)
else:
object_name = self._generate_success_object_name(
request_date_str=current_date,
response_id=response_obj.get("id", ""),
)
# used for testing
_litellm_params = kwargs.get("litellm_params", None) or {}
_metadata = _litellm_params.get("metadata", None) or {}
if "gcs_log_id" in _metadata:
object_name = _metadata["gcs_log_id"]
return object_name
async def get_request_response_payload(
self,
request_id: str,
start_time_utc: Optional[datetime],
end_time_utc: Optional[datetime],
) -> Optional[dict]:
"""
Get the request and response payload for a given `request_id`
Tries current day, next day, and previous day until it finds the payload
"""
if start_time_utc is None:
raise ValueError(
"start_time_utc is required for getting a payload from GCS Bucket"
)
# Try current day, next day, and previous day
dates_to_try = [
start_time_utc,
start_time_utc + timedelta(days=1),
start_time_utc - timedelta(days=1),
]
date_str = None
for date in dates_to_try:
try:
date_str = self._get_object_date_from_datetime(datetime_obj=date)
object_name = self._generate_success_object_name(
request_date_str=date_str,
response_id=request_id,
)
encoded_object_name = quote(object_name, safe="")
response = await self.download_gcs_object(encoded_object_name)
if response is not None:
loaded_response = json.loads(response)
return loaded_response
except Exception as e:
verbose_logger.debug(
f"Failed to fetch payload for date {date_str}: {str(e)}"
)
continue
return None
def _generate_success_object_name(
self,
request_date_str: str,
response_id: str,
) -> str:
return f"{request_date_str}/{response_id}"
def _generate_failure_object_name(
self,
request_date_str: str,
) -> str:
return f"{request_date_str}/failure-{uuid.uuid4().hex}"
def _get_object_date_from_datetime(self, datetime_obj: datetime) -> str:
return datetime_obj.strftime("%Y-%m-%d")
async def async_health_check(self) -> IntegrationHealthCheckStatus:
raise NotImplementedError("GCS Bucket does not support health check")
|