Spaces:
Sleeping
Sleeping
File size: 10,174 Bytes
469eae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import json
from typing import TYPE_CHECKING, Any, Optional, Union
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.safe_json_dumps import safe_dumps
from litellm.types.utils import StandardLoggingPayload
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
Span = Union[_Span, Any]
else:
Span = Any
def cast_as_primitive_value_type(value) -> Union[str, bool, int, float]:
"""
Converts a value to an OTEL-supported primitive for Arize/Phoenix observability.
"""
if value is None:
return ""
if isinstance(value, (str, bool, int, float)):
return value
try:
return str(value)
except Exception:
return ""
def safe_set_attribute(span: Span, key: str, value: Any):
"""
Sets a span attribute safely with OTEL-compliant primitive typing for Arize/Phoenix.
"""
primitive_value = cast_as_primitive_value_type(value)
span.set_attribute(key, primitive_value)
def set_attributes(span: Span, kwargs, response_obj): # noqa: PLR0915
"""
Populates span with OpenInference-compliant LLM attributes for Arize and Phoenix tracing.
"""
from litellm.integrations._types.open_inference import (
MessageAttributes,
OpenInferenceSpanKindValues,
SpanAttributes,
ToolCallAttributes,
)
try:
optional_params = kwargs.get("optional_params", {})
litellm_params = kwargs.get("litellm_params", {})
standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object"
)
if standard_logging_payload is None:
raise ValueError("standard_logging_object not found in kwargs")
#############################################
############ LLM CALL METADATA ##############
#############################################
# Set custom metadata for observability and trace enrichment.
metadata = (
standard_logging_payload.get("metadata")
if standard_logging_payload
else None
)
if metadata is not None:
safe_set_attribute(span, SpanAttributes.METADATA, safe_dumps(metadata))
#############################################
########## LLM Request Attributes ###########
#############################################
# The name of the LLM a request is being made to.
if kwargs.get("model"):
safe_set_attribute(
span,
SpanAttributes.LLM_MODEL_NAME,
kwargs.get("model"),
)
# The LLM request type.
safe_set_attribute(
span,
"llm.request.type",
standard_logging_payload["call_type"],
)
# The Generative AI Provider: Azure, OpenAI, etc.
safe_set_attribute(
span,
SpanAttributes.LLM_PROVIDER,
litellm_params.get("custom_llm_provider", "Unknown"),
)
# The maximum number of tokens the LLM generates for a request.
if optional_params.get("max_tokens"):
safe_set_attribute(
span,
"llm.request.max_tokens",
optional_params.get("max_tokens"),
)
# The temperature setting for the LLM request.
if optional_params.get("temperature"):
safe_set_attribute(
span,
"llm.request.temperature",
optional_params.get("temperature"),
)
# The top_p sampling setting for the LLM request.
if optional_params.get("top_p"):
safe_set_attribute(
span,
"llm.request.top_p",
optional_params.get("top_p"),
)
# Indicates whether response is streamed.
safe_set_attribute(
span,
"llm.is_streaming",
str(optional_params.get("stream", False)),
)
# Logs the user ID if present.
if optional_params.get("user"):
safe_set_attribute(
span,
"llm.user",
optional_params.get("user"),
)
# The unique identifier for the completion.
if response_obj and response_obj.get("id"):
safe_set_attribute(span, "llm.response.id", response_obj.get("id"))
# The model used to generate the response.
if response_obj and response_obj.get("model"):
safe_set_attribute(
span,
"llm.response.model",
response_obj.get("model"),
)
# Required by OpenInference to mark span as LLM kind.
safe_set_attribute(
span,
SpanAttributes.OPENINFERENCE_SPAN_KIND,
OpenInferenceSpanKindValues.LLM.value,
)
messages = kwargs.get("messages")
# for /chat/completions
# https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
if messages:
last_message = messages[-1]
safe_set_attribute(
span,
SpanAttributes.INPUT_VALUE,
last_message.get("content", ""),
)
# LLM_INPUT_MESSAGES shows up under `input_messages` tab on the span page.
for idx, msg in enumerate(messages):
prefix = f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}"
# Set the role per message.
safe_set_attribute(
span, f"{prefix}.{MessageAttributes.MESSAGE_ROLE}", msg.get("role")
)
# Set the content per message.
safe_set_attribute(
span,
f"{prefix}.{MessageAttributes.MESSAGE_CONTENT}",
msg.get("content", ""),
)
# Capture tools (function definitions) used in the LLM call.
tools = optional_params.get("tools")
if tools:
for idx, tool in enumerate(tools):
function = tool.get("function")
if not function:
continue
prefix = f"{SpanAttributes.LLM_TOOLS}.{idx}"
safe_set_attribute(
span, f"{prefix}.{SpanAttributes.TOOL_NAME}", function.get("name")
)
safe_set_attribute(
span,
f"{prefix}.{SpanAttributes.TOOL_DESCRIPTION}",
function.get("description"),
)
safe_set_attribute(
span,
f"{prefix}.{SpanAttributes.TOOL_PARAMETERS}",
json.dumps(function.get("parameters")),
)
# Capture tool calls made during function-calling LLM flows.
functions = optional_params.get("functions")
if functions:
for idx, function in enumerate(functions):
prefix = f"{MessageAttributes.MESSAGE_TOOL_CALLS}.{idx}"
safe_set_attribute(
span,
f"{prefix}.{ToolCallAttributes.TOOL_CALL_FUNCTION_NAME}",
function.get("name"),
)
# Capture invocation parameters and user ID if available.
model_params = (
standard_logging_payload.get("model_parameters")
if standard_logging_payload
else None
)
if model_params:
# The Generative AI Provider: Azure, OpenAI, etc.
safe_set_attribute(
span,
SpanAttributes.LLM_INVOCATION_PARAMETERS,
safe_dumps(model_params),
)
if model_params.get("user"):
user_id = model_params.get("user")
if user_id is not None:
safe_set_attribute(span, SpanAttributes.USER_ID, user_id)
#############################################
########## LLM Response Attributes ##########
#############################################
# Captures response tokens, message, and content.
if hasattr(response_obj, "get"):
for idx, choice in enumerate(response_obj.get("choices", [])):
response_message = choice.get("message", {})
safe_set_attribute(
span,
SpanAttributes.OUTPUT_VALUE,
response_message.get("content", ""),
)
# This shows up under `output_messages` tab on the span page.
prefix = f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.{idx}"
safe_set_attribute(
span,
f"{prefix}.{MessageAttributes.MESSAGE_ROLE}",
response_message.get("role"),
)
safe_set_attribute(
span,
f"{prefix}.{MessageAttributes.MESSAGE_CONTENT}",
response_message.get("content", ""),
)
# Token usage info.
usage = response_obj and response_obj.get("usage")
if usage:
safe_set_attribute(
span,
SpanAttributes.LLM_TOKEN_COUNT_TOTAL,
usage.get("total_tokens"),
)
# The number of tokens used in the LLM response (completion).
safe_set_attribute(
span,
SpanAttributes.LLM_TOKEN_COUNT_COMPLETION,
usage.get("completion_tokens"),
)
# The number of tokens used in the LLM prompt.
safe_set_attribute(
span,
SpanAttributes.LLM_TOKEN_COUNT_PROMPT,
usage.get("prompt_tokens"),
)
except Exception as e:
verbose_logger.error(
f"[Arize/Phoenix] Failed to set OpenInference span attributes: {e}"
)
if hasattr(span, "record_exception"):
span.record_exception(e)
|