Spaces:
Running
Running
File size: 55,933 Bytes
469eae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 |
# What is this?
## File for 'response_cost' calculation in Logging
import time
from functools import lru_cache
from typing import Any, List, Literal, Optional, Tuple, Union, cast
from pydantic import BaseModel
import litellm
import litellm._logging
from litellm import verbose_logger
from litellm.constants import (
DEFAULT_MAX_LRU_CACHE_SIZE,
DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND,
)
from litellm.litellm_core_utils.llm_cost_calc.tool_call_cost_tracking import (
StandardBuiltInToolCostTracking,
)
from litellm.litellm_core_utils.llm_cost_calc.utils import (
_generic_cost_per_character,
generic_cost_per_token,
select_cost_metric_for_model,
)
from litellm.llms.anthropic.cost_calculation import (
cost_per_token as anthropic_cost_per_token,
)
from litellm.llms.azure.cost_calculation import (
cost_per_token as azure_openai_cost_per_token,
)
from litellm.llms.bedrock.image.cost_calculator import (
cost_calculator as bedrock_image_cost_calculator,
)
from litellm.llms.databricks.cost_calculator import (
cost_per_token as databricks_cost_per_token,
)
from litellm.llms.deepseek.cost_calculator import (
cost_per_token as deepseek_cost_per_token,
)
from litellm.llms.fireworks_ai.cost_calculator import (
cost_per_token as fireworks_ai_cost_per_token,
)
from litellm.llms.gemini.cost_calculator import cost_per_token as gemini_cost_per_token
from litellm.llms.openai.cost_calculation import (
cost_per_second as openai_cost_per_second,
)
from litellm.llms.openai.cost_calculation import cost_per_token as openai_cost_per_token
from litellm.llms.together_ai.cost_calculator import get_model_params_and_category
from litellm.llms.vertex_ai.cost_calculator import (
cost_per_character as google_cost_per_character,
)
from litellm.llms.vertex_ai.cost_calculator import (
cost_per_token as google_cost_per_token,
)
from litellm.llms.vertex_ai.cost_calculator import cost_router as google_cost_router
from litellm.llms.vertex_ai.image_generation.cost_calculator import (
cost_calculator as vertex_ai_image_cost_calculator,
)
from litellm.responses.utils import ResponseAPILoggingUtils
from litellm.types.llms.openai import (
HttpxBinaryResponseContent,
ImageGenerationRequestQuality,
OpenAIModerationResponse,
OpenAIRealtimeStreamList,
OpenAIRealtimeStreamResponseBaseObject,
OpenAIRealtimeStreamSessionEvents,
ResponseAPIUsage,
ResponsesAPIResponse,
)
from litellm.types.rerank import RerankBilledUnits, RerankResponse
from litellm.types.utils import (
CallTypesLiteral,
LiteLLMRealtimeStreamLoggingObject,
LlmProviders,
LlmProvidersSet,
ModelInfo,
PassthroughCallTypes,
StandardBuiltInToolsParams,
Usage,
)
from litellm.utils import (
CallTypes,
CostPerToken,
EmbeddingResponse,
ImageResponse,
ModelResponse,
ProviderConfigManager,
TextCompletionResponse,
TranscriptionResponse,
_cached_get_model_info_helper,
token_counter,
)
def _cost_per_token_custom_pricing_helper(
prompt_tokens: float = 0,
completion_tokens: float = 0,
response_time_ms: Optional[float] = 0.0,
### CUSTOM PRICING ###
custom_cost_per_token: Optional[CostPerToken] = None,
custom_cost_per_second: Optional[float] = None,
) -> Optional[Tuple[float, float]]:
"""Internal helper function for calculating cost, if custom pricing given"""
if custom_cost_per_token is None and custom_cost_per_second is None:
return None
if custom_cost_per_token is not None:
input_cost = custom_cost_per_token["input_cost_per_token"] * prompt_tokens
output_cost = custom_cost_per_token["output_cost_per_token"] * completion_tokens
return input_cost, output_cost
elif custom_cost_per_second is not None:
output_cost = custom_cost_per_second * response_time_ms / 1000 # type: ignore
return 0, output_cost
return None
def cost_per_token( # noqa: PLR0915
model: str = "",
prompt_tokens: int = 0,
completion_tokens: int = 0,
response_time_ms: Optional[float] = 0.0,
custom_llm_provider: Optional[str] = None,
region_name=None,
### CHARACTER PRICING ###
prompt_characters: Optional[int] = None,
completion_characters: Optional[int] = None,
### PROMPT CACHING PRICING ### - used for anthropic
cache_creation_input_tokens: Optional[int] = 0,
cache_read_input_tokens: Optional[int] = 0,
### CUSTOM PRICING ###
custom_cost_per_token: Optional[CostPerToken] = None,
custom_cost_per_second: Optional[float] = None,
### NUMBER OF QUERIES ###
number_of_queries: Optional[int] = None,
### USAGE OBJECT ###
usage_object: Optional[Usage] = None, # just read the usage object if provided
### BILLED UNITS ###
rerank_billed_units: Optional[RerankBilledUnits] = None,
### CALL TYPE ###
call_type: CallTypesLiteral = "completion",
audio_transcription_file_duration: float = 0.0, # for audio transcription calls - the file time in seconds
) -> Tuple[float, float]: # type: ignore
"""
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
Parameters:
model (str): The name of the model to use. Default is ""
prompt_tokens (int): The number of tokens in the prompt.
completion_tokens (int): The number of tokens in the completion.
response_time (float): The amount of time, in milliseconds, it took the call to complete.
prompt_characters (float): The number of characters in the prompt. Used for vertex ai cost calculation.
completion_characters (float): The number of characters in the completion response. Used for vertex ai cost calculation.
custom_llm_provider (str): The llm provider to whom the call was made (see init.py for full list)
custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
call_type: Optional[str]: the call type
Returns:
tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively.
"""
if model is None:
raise Exception("Invalid arg. Model cannot be none.")
## RECONSTRUCT USAGE BLOCK ##
if usage_object is not None:
usage_block = usage_object
else:
usage_block = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
cache_creation_input_tokens=cache_creation_input_tokens,
cache_read_input_tokens=cache_read_input_tokens,
)
## CUSTOM PRICING ##
response_cost = _cost_per_token_custom_pricing_helper(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
response_time_ms=response_time_ms,
custom_cost_per_second=custom_cost_per_second,
custom_cost_per_token=custom_cost_per_token,
)
if response_cost is not None:
return response_cost[0], response_cost[1]
# given
prompt_tokens_cost_usd_dollar: float = 0
completion_tokens_cost_usd_dollar: float = 0
model_cost_ref = litellm.model_cost
model_with_provider = model
if custom_llm_provider is not None:
model_with_provider = custom_llm_provider + "/" + model
if region_name is not None:
model_with_provider_and_region = (
f"{custom_llm_provider}/{region_name}/{model}"
)
if (
model_with_provider_and_region in model_cost_ref
): # use region based pricing, if it's available
model_with_provider = model_with_provider_and_region
else:
_, custom_llm_provider, _, _ = litellm.get_llm_provider(model=model)
model_without_prefix = model
model_parts = model.split("/", 1)
if len(model_parts) > 1:
model_without_prefix = model_parts[1]
else:
model_without_prefix = model
"""
Code block that formats model to lookup in litellm.model_cost
Option1. model = "bedrock/ap-northeast-1/anthropic.claude-instant-v1". This is the most accurate since it is region based. Should always be option 1
Option2. model = "openai/gpt-4" - model = provider/model
Option3. model = "anthropic.claude-3" - model = model
"""
if (
model_with_provider in model_cost_ref
): # Option 2. use model with provider, model = "openai/gpt-4"
model = model_with_provider
elif model in model_cost_ref: # Option 1. use model passed, model="gpt-4"
model = model
elif (
model_without_prefix in model_cost_ref
): # Option 3. if user passed model="bedrock/anthropic.claude-3", use model="anthropic.claude-3"
model = model_without_prefix
# see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
if call_type == "speech" or call_type == "aspeech":
speech_model_info = litellm.get_model_info(
model=model_without_prefix, custom_llm_provider=custom_llm_provider
)
cost_metric = select_cost_metric_for_model(speech_model_info)
prompt_cost: float = 0.0
completion_cost: float = 0.0
if cost_metric == "cost_per_character":
if prompt_characters is None:
raise ValueError(
"prompt_characters must be provided for tts calls. prompt_characters={}, model={}, custom_llm_provider={}, call_type={}".format(
prompt_characters,
model,
custom_llm_provider,
call_type,
)
)
_prompt_cost, _completion_cost = _generic_cost_per_character(
model=model_without_prefix,
custom_llm_provider=custom_llm_provider,
prompt_characters=prompt_characters,
completion_characters=0,
custom_prompt_cost=None,
custom_completion_cost=0,
)
if _prompt_cost is None or _completion_cost is None:
raise ValueError(
"cost for tts call is None. prompt_cost={}, completion_cost={}, model={}, custom_llm_provider={}, prompt_characters={}, completion_characters={}".format(
_prompt_cost,
_completion_cost,
model_without_prefix,
custom_llm_provider,
prompt_characters,
completion_characters,
)
)
prompt_cost = _prompt_cost
completion_cost = _completion_cost
elif cost_metric == "cost_per_token":
prompt_cost, completion_cost = generic_cost_per_token(
model=model_without_prefix,
usage=usage_block,
custom_llm_provider=custom_llm_provider,
)
return prompt_cost, completion_cost
elif call_type == "arerank" or call_type == "rerank":
return rerank_cost(
model=model,
custom_llm_provider=custom_llm_provider,
billed_units=rerank_billed_units,
)
elif (
call_type == "aretrieve_batch"
or call_type == "retrieve_batch"
or call_type == CallTypes.aretrieve_batch
or call_type == CallTypes.retrieve_batch
):
return batch_cost_calculator(
usage=usage_block, model=model, custom_llm_provider=custom_llm_provider
)
elif call_type == "atranscription" or call_type == "transcription":
return openai_cost_per_second(
model=model,
custom_llm_provider=custom_llm_provider,
duration=audio_transcription_file_duration,
)
elif custom_llm_provider == "vertex_ai":
cost_router = google_cost_router(
model=model_without_prefix,
custom_llm_provider=custom_llm_provider,
call_type=call_type,
)
if cost_router == "cost_per_character":
return google_cost_per_character(
model=model_without_prefix,
custom_llm_provider=custom_llm_provider,
prompt_characters=prompt_characters,
completion_characters=completion_characters,
usage=usage_block,
)
elif cost_router == "cost_per_token":
return google_cost_per_token(
model=model_without_prefix,
custom_llm_provider=custom_llm_provider,
usage=usage_block,
)
elif custom_llm_provider == "anthropic":
return anthropic_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "openai":
return openai_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "databricks":
return databricks_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "fireworks_ai":
return fireworks_ai_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "azure":
return azure_openai_cost_per_token(
model=model, usage=usage_block, response_time_ms=response_time_ms
)
elif custom_llm_provider == "gemini":
return gemini_cost_per_token(model=model, usage=usage_block)
elif custom_llm_provider == "deepseek":
return deepseek_cost_per_token(model=model, usage=usage_block)
else:
model_info = _cached_get_model_info_helper(
model=model, custom_llm_provider=custom_llm_provider
)
if model_info["input_cost_per_token"] > 0:
## COST PER TOKEN ##
prompt_tokens_cost_usd_dollar = (
model_info["input_cost_per_token"] * prompt_tokens
)
elif (
model_info.get("input_cost_per_second", None) is not None
and response_time_ms is not None
):
verbose_logger.debug(
"For model=%s - input_cost_per_second: %s; response time: %s",
model,
model_info.get("input_cost_per_second", None),
response_time_ms,
)
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = (
model_info["input_cost_per_second"] * response_time_ms / 1000 # type: ignore
)
if model_info["output_cost_per_token"] > 0:
completion_tokens_cost_usd_dollar = (
model_info["output_cost_per_token"] * completion_tokens
)
elif (
model_info.get("output_cost_per_second", None) is not None
and response_time_ms is not None
):
verbose_logger.debug(
"For model=%s - output_cost_per_second: %s; response time: %s",
model,
model_info.get("output_cost_per_second", None),
response_time_ms,
)
## COST PER SECOND ##
completion_tokens_cost_usd_dollar = (
model_info["output_cost_per_second"] * response_time_ms / 1000 # type: ignore
)
verbose_logger.debug(
"Returned custom cost for model=%s - prompt_tokens_cost_usd_dollar: %s, completion_tokens_cost_usd_dollar: %s",
model,
prompt_tokens_cost_usd_dollar,
completion_tokens_cost_usd_dollar,
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def get_replicate_completion_pricing(completion_response: dict, total_time=0.0):
# see https://replicate.com/pricing
# for all litellm currently supported LLMs, almost all requests go to a100_80gb
a100_80gb_price_per_second_public = DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND # assume all calls sent to A100 80GB for now
if total_time == 0.0: # total time is in ms
start_time = completion_response.get("created", time.time())
end_time = getattr(completion_response, "ended", time.time())
total_time = end_time - start_time
return a100_80gb_price_per_second_public * total_time / 1000
def has_hidden_params(obj: Any) -> bool:
return hasattr(obj, "_hidden_params")
def _get_provider_for_cost_calc(
model: Optional[str],
custom_llm_provider: Optional[str] = None,
) -> Optional[str]:
if custom_llm_provider is not None:
return custom_llm_provider
if model is None:
return None
try:
_, custom_llm_provider, _, _ = litellm.get_llm_provider(model=model)
except Exception as e:
verbose_logger.debug(
f"litellm.cost_calculator.py::_get_provider_for_cost_calc() - Error inferring custom_llm_provider - {str(e)}"
)
return None
return custom_llm_provider
def _select_model_name_for_cost_calc(
model: Optional[str],
completion_response: Optional[Any],
base_model: Optional[str] = None,
custom_pricing: Optional[bool] = None,
custom_llm_provider: Optional[str] = None,
router_model_id: Optional[str] = None,
) -> Optional[str]:
"""
1. If custom pricing is true, return received model name
2. If base_model is set (e.g. for azure models), return that
3. If completion response has model set return that
4. Check if model is passed in return that
"""
return_model: Optional[str] = None
region_name: Optional[str] = None
custom_llm_provider = _get_provider_for_cost_calc(
model=model, custom_llm_provider=custom_llm_provider
)
completion_response_model: Optional[str] = None
if completion_response is not None:
if isinstance(completion_response, BaseModel):
completion_response_model = getattr(completion_response, "model", None)
elif isinstance(completion_response, dict):
completion_response_model = completion_response.get("model", None)
hidden_params: Optional[dict] = getattr(completion_response, "_hidden_params", None)
if custom_pricing is True:
if router_model_id is not None and router_model_id in litellm.model_cost:
return_model = router_model_id
else:
return_model = model
if base_model is not None:
return_model = base_model
if completion_response_model is None and hidden_params is not None:
if (
hidden_params.get("model", None) is not None
and len(hidden_params["model"]) > 0
):
return_model = hidden_params.get("model", model)
if hidden_params is not None and hidden_params.get("region_name", None) is not None:
region_name = hidden_params.get("region_name", None)
if return_model is None and completion_response_model is not None:
return_model = completion_response_model
if return_model is None and model is not None:
return_model = model
if (
return_model is not None
and custom_llm_provider is not None
and not _model_contains_known_llm_provider(return_model)
): # add provider prefix if not already present, to match model_cost
if region_name is not None:
return_model = f"{custom_llm_provider}/{region_name}/{return_model}"
else:
return_model = f"{custom_llm_provider}/{return_model}"
return return_model
@lru_cache(maxsize=DEFAULT_MAX_LRU_CACHE_SIZE)
def _model_contains_known_llm_provider(model: str) -> bool:
"""
Check if the model contains a known llm provider
"""
_provider_prefix = model.split("/")[0]
return _provider_prefix in LlmProvidersSet
def _get_usage_object(
completion_response: Any,
) -> Optional[Usage]:
usage_obj = cast(
Union[Usage, ResponseAPIUsage, dict, BaseModel],
(
completion_response.get("usage")
if isinstance(completion_response, dict)
else getattr(completion_response, "get", lambda x: None)("usage")
),
)
if usage_obj is None:
return None
if isinstance(usage_obj, Usage):
return usage_obj
elif (
usage_obj is not None
and (isinstance(usage_obj, dict) or isinstance(usage_obj, ResponseAPIUsage))
and ResponseAPILoggingUtils._is_response_api_usage(usage_obj)
):
return ResponseAPILoggingUtils._transform_response_api_usage_to_chat_usage(
usage_obj
)
elif isinstance(usage_obj, dict):
return Usage(**usage_obj)
elif isinstance(usage_obj, BaseModel):
return Usage(**usage_obj.model_dump())
else:
verbose_logger.debug(
f"Unknown usage object type: {type(usage_obj)}, usage_obj: {usage_obj}"
)
return None
def _is_known_usage_objects(usage_obj):
"""Returns True if the usage obj is a known Usage type"""
return isinstance(usage_obj, litellm.Usage) or isinstance(
usage_obj, ResponseAPIUsage
)
def _infer_call_type(
call_type: Optional[CallTypesLiteral], completion_response: Any
) -> Optional[CallTypesLiteral]:
if call_type is not None:
return call_type
if completion_response is None:
return None
if isinstance(completion_response, ModelResponse):
return "completion"
elif isinstance(completion_response, EmbeddingResponse):
return "embedding"
elif isinstance(completion_response, TranscriptionResponse):
return "transcription"
elif isinstance(completion_response, HttpxBinaryResponseContent):
return "speech"
elif isinstance(completion_response, RerankResponse):
return "rerank"
elif isinstance(completion_response, ImageResponse):
return "image_generation"
elif isinstance(completion_response, TextCompletionResponse):
return "text_completion"
return call_type
def completion_cost( # noqa: PLR0915
completion_response=None,
model: Optional[str] = None,
prompt="",
messages: List = [],
completion="",
total_time: Optional[float] = 0.0, # used for replicate, sagemaker
call_type: Optional[CallTypesLiteral] = None,
### REGION ###
custom_llm_provider=None,
region_name=None, # used for bedrock pricing
### IMAGE GEN ###
size: Optional[str] = None,
quality: Optional[str] = None,
n: Optional[int] = None, # number of images
### CUSTOM PRICING ###
custom_cost_per_token: Optional[CostPerToken] = None,
custom_cost_per_second: Optional[float] = None,
optional_params: Optional[dict] = None,
custom_pricing: Optional[bool] = None,
base_model: Optional[str] = None,
standard_built_in_tools_params: Optional[StandardBuiltInToolsParams] = None,
litellm_model_name: Optional[str] = None,
router_model_id: Optional[str] = None,
) -> float:
"""
Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
Parameters:
completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
[OPTIONAL PARAMS]
model (str): Optional. The name of the language model used in the completion calls
prompt (str): Optional. The input prompt passed to the llm
completion (str): Optional. The output completion text from the llm
total_time (float, int): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
Returns:
float: The cost in USD dollars for the completion based on the provided parameters.
Exceptions:
Raises exception if model not in the litellm model cost map. Register model, via custom pricing or PR - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json
Note:
- If completion_response is provided, the function extracts token information and the model name from it.
- If completion_response is not provided, the function calculates token counts based on the model and input text.
- The cost is calculated based on the model, prompt tokens, and completion tokens.
- For certain models containing "togethercomputer" in the name, prices are based on the model size.
- For un-mapped Replicate models, the cost is calculated based on the total time used for the request.
"""
try:
call_type = _infer_call_type(call_type, completion_response) or "completion"
if (
(call_type == "aimage_generation" or call_type == "image_generation")
and model is not None
and isinstance(model, str)
and len(model) == 0
and custom_llm_provider == "azure"
):
model = "dall-e-2" # for dall-e-2, azure expects an empty model name
# Handle Inputs to completion_cost
prompt_tokens = 0
prompt_characters: Optional[int] = None
completion_tokens = 0
completion_characters: Optional[int] = None
cache_creation_input_tokens: Optional[int] = None
cache_read_input_tokens: Optional[int] = None
audio_transcription_file_duration: float = 0.0
cost_per_token_usage_object: Optional[Usage] = _get_usage_object(
completion_response=completion_response
)
rerank_billed_units: Optional[RerankBilledUnits] = None
selected_model = _select_model_name_for_cost_calc(
model=model,
completion_response=completion_response,
custom_llm_provider=custom_llm_provider,
custom_pricing=custom_pricing,
base_model=base_model,
router_model_id=router_model_id,
)
potential_model_names = [selected_model]
if model is not None:
potential_model_names.append(model)
for idx, model in enumerate(potential_model_names):
try:
verbose_logger.info(
f"selected model name for cost calculation: {model}"
)
if completion_response is not None and (
isinstance(completion_response, BaseModel)
or isinstance(completion_response, dict)
): # tts returns a custom class
if isinstance(completion_response, dict):
usage_obj: Optional[
Union[dict, Usage]
] = completion_response.get("usage", {})
else:
usage_obj = getattr(completion_response, "usage", {})
if isinstance(usage_obj, BaseModel) and not _is_known_usage_objects(
usage_obj=usage_obj
):
setattr(
completion_response,
"usage",
litellm.Usage(**usage_obj.model_dump()),
)
if usage_obj is None:
_usage = {}
elif isinstance(usage_obj, BaseModel):
_usage = usage_obj.model_dump()
else:
_usage = usage_obj
if ResponseAPILoggingUtils._is_response_api_usage(_usage):
_usage = ResponseAPILoggingUtils._transform_response_api_usage_to_chat_usage(
_usage
).model_dump()
# get input/output tokens from completion_response
prompt_tokens = _usage.get("prompt_tokens", 0)
completion_tokens = _usage.get("completion_tokens", 0)
cache_creation_input_tokens = _usage.get(
"cache_creation_input_tokens", 0
)
cache_read_input_tokens = _usage.get("cache_read_input_tokens", 0)
if (
"prompt_tokens_details" in _usage
and _usage["prompt_tokens_details"] != {}
and _usage["prompt_tokens_details"]
):
prompt_tokens_details = _usage.get("prompt_tokens_details", {})
cache_read_input_tokens = prompt_tokens_details.get(
"cached_tokens", 0
)
total_time = getattr(completion_response, "_response_ms", 0)
hidden_params = getattr(completion_response, "_hidden_params", None)
if hidden_params is not None:
custom_llm_provider = hidden_params.get(
"custom_llm_provider", custom_llm_provider or None
)
region_name = hidden_params.get("region_name", region_name)
size = hidden_params.get("optional_params", {}).get(
"size", "1024-x-1024"
) # openai default
quality = hidden_params.get("optional_params", {}).get(
"quality", "standard"
) # openai default
n = hidden_params.get("optional_params", {}).get(
"n", 1
) # openai default
else:
if model is None:
raise ValueError(
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
)
if len(messages) > 0:
prompt_tokens = token_counter(model=model, messages=messages)
elif len(prompt) > 0:
prompt_tokens = token_counter(model=model, text=prompt)
completion_tokens = token_counter(model=model, text=completion)
if model is None:
raise ValueError(
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
)
if custom_llm_provider is None:
try:
model, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=model
) # strip the llm provider from the model name -> for image gen cost calculation
except Exception as e:
verbose_logger.debug(
"litellm.cost_calculator.py::completion_cost() - Error inferring custom_llm_provider - {}".format(
str(e)
)
)
if (
call_type == CallTypes.image_generation.value
or call_type == CallTypes.aimage_generation.value
or call_type
== PassthroughCallTypes.passthrough_image_generation.value
):
### IMAGE GENERATION COST CALCULATION ###
if custom_llm_provider == "vertex_ai":
if isinstance(completion_response, ImageResponse):
return vertex_ai_image_cost_calculator(
model=model,
image_response=completion_response,
)
elif custom_llm_provider == "bedrock":
if isinstance(completion_response, ImageResponse):
return bedrock_image_cost_calculator(
model=model,
size=size,
image_response=completion_response,
optional_params=optional_params,
)
raise TypeError(
"completion_response must be of type ImageResponse for bedrock image cost calculation"
)
else:
return default_image_cost_calculator(
model=model,
quality=quality,
custom_llm_provider=custom_llm_provider,
n=n,
size=size,
optional_params=optional_params,
)
elif (
call_type == CallTypes.speech.value
or call_type == CallTypes.aspeech.value
):
prompt_characters = litellm.utils._count_characters(text=prompt)
elif (
call_type == CallTypes.atranscription.value
or call_type == CallTypes.transcription.value
):
audio_transcription_file_duration = getattr(
completion_response, "duration", 0.0
)
elif (
call_type == CallTypes.rerank.value
or call_type == CallTypes.arerank.value
):
if completion_response is not None and isinstance(
completion_response, RerankResponse
):
meta_obj = completion_response.meta
if meta_obj is not None:
billed_units = meta_obj.get("billed_units", {}) or {}
else:
billed_units = {}
rerank_billed_units = RerankBilledUnits(
search_units=billed_units.get("search_units"),
total_tokens=billed_units.get("total_tokens"),
)
search_units = (
billed_units.get("search_units") or 1
) # cohere charges per request by default.
completion_tokens = search_units
elif call_type == CallTypes.arealtime.value and isinstance(
completion_response, LiteLLMRealtimeStreamLoggingObject
):
if (
cost_per_token_usage_object is None
or custom_llm_provider is None
):
raise ValueError(
"usage object and custom_llm_provider must be provided for realtime stream cost calculation. Got cost_per_token_usage_object={}, custom_llm_provider={}".format(
cost_per_token_usage_object,
custom_llm_provider,
)
)
return handle_realtime_stream_cost_calculation(
results=completion_response.results,
combined_usage_object=cost_per_token_usage_object,
custom_llm_provider=custom_llm_provider,
litellm_model_name=model,
)
# Calculate cost based on prompt_tokens, completion_tokens
if (
"togethercomputer" in model
or "together_ai" in model
or custom_llm_provider == "together_ai"
):
# together ai prices based on size of llm
# get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
model = get_model_params_and_category(
model, call_type=CallTypes(call_type)
)
# replicate llms are calculate based on time for request running
# see https://replicate.com/pricing
elif (
model in litellm.replicate_models or "replicate" in model
) and model not in litellm.model_cost:
# for unmapped replicate model, default to replicate's time tracking logic
return get_replicate_completion_pricing(completion_response, total_time) # type: ignore
if model is None:
raise ValueError(
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
)
if (
custom_llm_provider is not None
and custom_llm_provider == "vertex_ai"
):
# Calculate the prompt characters + response characters
if len(messages) > 0:
prompt_string = litellm.utils.get_formatted_prompt(
data={"messages": messages}, call_type="completion"
)
prompt_characters = litellm.utils._count_characters(
text=prompt_string
)
if completion_response is not None and isinstance(
completion_response, ModelResponse
):
completion_string = litellm.utils.get_response_string(
response_obj=completion_response
)
completion_characters = litellm.utils._count_characters(
text=completion_string
)
(
prompt_tokens_cost_usd_dollar,
completion_tokens_cost_usd_dollar,
) = cost_per_token(
model=model,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
custom_llm_provider=custom_llm_provider,
response_time_ms=total_time,
region_name=region_name,
custom_cost_per_second=custom_cost_per_second,
custom_cost_per_token=custom_cost_per_token,
prompt_characters=prompt_characters,
completion_characters=completion_characters,
cache_creation_input_tokens=cache_creation_input_tokens,
cache_read_input_tokens=cache_read_input_tokens,
usage_object=cost_per_token_usage_object,
call_type=cast(CallTypesLiteral, call_type),
audio_transcription_file_duration=audio_transcription_file_duration,
rerank_billed_units=rerank_billed_units,
)
_final_cost = (
prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
)
_final_cost += (
StandardBuiltInToolCostTracking.get_cost_for_built_in_tools(
model=model,
response_object=completion_response,
standard_built_in_tools_params=standard_built_in_tools_params,
custom_llm_provider=custom_llm_provider,
)
)
return _final_cost
except Exception as e:
verbose_logger.debug(
"litellm.cost_calculator.py::completion_cost() - Error calculating cost for model={} - {}".format(
model, str(e)
)
)
if idx == len(potential_model_names) - 1:
raise e
raise Exception(
"Unable to calculat cost for received potential model names - {}".format(
potential_model_names
)
)
except Exception as e:
raise e
def get_response_cost_from_hidden_params(
hidden_params: Union[dict, BaseModel],
) -> Optional[float]:
if isinstance(hidden_params, BaseModel):
_hidden_params_dict = hidden_params.model_dump()
else:
_hidden_params_dict = hidden_params
additional_headers = _hidden_params_dict.get("additional_headers", {})
if (
additional_headers
and "llm_provider-x-litellm-response-cost" in additional_headers
):
response_cost = additional_headers["llm_provider-x-litellm-response-cost"]
if response_cost is None:
return None
return float(additional_headers["llm_provider-x-litellm-response-cost"])
return None
def response_cost_calculator(
response_object: Union[
ModelResponse,
EmbeddingResponse,
ImageResponse,
TranscriptionResponse,
TextCompletionResponse,
HttpxBinaryResponseContent,
RerankResponse,
ResponsesAPIResponse,
LiteLLMRealtimeStreamLoggingObject,
OpenAIModerationResponse,
],
model: str,
custom_llm_provider: Optional[str],
call_type: Literal[
"embedding",
"aembedding",
"completion",
"acompletion",
"atext_completion",
"text_completion",
"image_generation",
"aimage_generation",
"moderation",
"amoderation",
"atranscription",
"transcription",
"aspeech",
"speech",
"rerank",
"arerank",
],
optional_params: dict,
cache_hit: Optional[bool] = None,
base_model: Optional[str] = None,
custom_pricing: Optional[bool] = None,
prompt: str = "",
standard_built_in_tools_params: Optional[StandardBuiltInToolsParams] = None,
litellm_model_name: Optional[str] = None,
router_model_id: Optional[str] = None,
) -> float:
"""
Returns
- float or None: cost of response
"""
try:
response_cost: float = 0.0
if cache_hit is not None and cache_hit is True:
response_cost = 0.0
else:
if isinstance(response_object, BaseModel):
response_object._hidden_params["optional_params"] = optional_params
if hasattr(response_object, "_hidden_params"):
provider_response_cost = get_response_cost_from_hidden_params(
response_object._hidden_params
)
if provider_response_cost is not None:
return provider_response_cost
response_cost = completion_cost(
completion_response=response_object,
model=model,
call_type=call_type,
custom_llm_provider=custom_llm_provider,
optional_params=optional_params,
custom_pricing=custom_pricing,
base_model=base_model,
prompt=prompt,
standard_built_in_tools_params=standard_built_in_tools_params,
litellm_model_name=litellm_model_name,
router_model_id=router_model_id,
)
return response_cost
except Exception as e:
raise e
def rerank_cost(
model: str,
custom_llm_provider: Optional[str],
billed_units: Optional[RerankBilledUnits] = None,
) -> Tuple[float, float]:
"""
Returns
- float or None: cost of response OR none if error.
"""
_, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=model, custom_llm_provider=custom_llm_provider
)
try:
config = ProviderConfigManager.get_provider_rerank_config(
model=model,
api_base=None,
present_version_params=[],
provider=LlmProviders(custom_llm_provider),
)
try:
model_info: Optional[ModelInfo] = litellm.get_model_info(
model=model, custom_llm_provider=custom_llm_provider
)
except Exception:
model_info = None
return config.calculate_rerank_cost(
model=model,
custom_llm_provider=custom_llm_provider,
billed_units=billed_units,
model_info=model_info,
)
except Exception as e:
raise e
def transcription_cost(
model: str, custom_llm_provider: Optional[str], duration: float
) -> Tuple[float, float]:
return openai_cost_per_second(
model=model, custom_llm_provider=custom_llm_provider, duration=duration
)
def default_image_cost_calculator(
model: str,
custom_llm_provider: Optional[str] = None,
quality: Optional[str] = None,
n: Optional[int] = 1, # Default to 1 image
size: Optional[str] = "1024-x-1024", # OpenAI default
optional_params: Optional[dict] = None,
) -> float:
"""
Default image cost calculator for image generation
Args:
model (str): Model name
image_response (ImageResponse): Response from image generation
quality (Optional[str]): Image quality setting
n (Optional[int]): Number of images generated
size (Optional[str]): Image size (e.g. "1024x1024" or "1024-x-1024")
Returns:
float: Cost in USD for the image generation
Raises:
Exception: If model pricing not found in cost map
"""
# Standardize size format to use "-x-"
size_str: str = size or "1024-x-1024"
size_str = (
size_str.replace("x", "-x-")
if "x" in size_str and "-x-" not in size_str
else size_str
)
# Parse dimensions
height, width = map(int, size_str.split("-x-"))
# Build model names for cost lookup
base_model_name = f"{size_str}/{model}"
if custom_llm_provider and model.startswith(custom_llm_provider):
base_model_name = (
f"{custom_llm_provider}/{size_str}/{model.replace(custom_llm_provider, '')}"
)
model_name_with_quality = (
f"{quality}/{base_model_name}" if quality else base_model_name
)
# gpt-image-1 models use low, medium, high quality. If user did not specify quality, use medium fot gpt-image-1 model family
model_name_with_v2_quality = (
f"{ImageGenerationRequestQuality.MEDIUM.value}/{base_model_name}"
)
verbose_logger.debug(
f"Looking up cost for models: {model_name_with_quality}, {base_model_name}"
)
model_without_provider = f"{size_str}/{model.split('/')[-1]}"
model_with_quality_without_provider = (
f"{quality}/{model_without_provider}" if quality else model_without_provider
)
# Try model with quality first, fall back to base model name
cost_info: Optional[dict] = None
models_to_check = [
model_name_with_quality,
base_model_name,
model_name_with_v2_quality,
model_with_quality_without_provider,
model_without_provider,
model,
]
for model in models_to_check:
if model in litellm.model_cost:
cost_info = litellm.model_cost[model]
break
if cost_info is None:
raise Exception(
f"Model not found in cost map. Tried checking {models_to_check}"
)
return cost_info["input_cost_per_pixel"] * height * width * n
def batch_cost_calculator(
usage: Usage,
model: str,
custom_llm_provider: Optional[str] = None,
) -> Tuple[float, float]:
"""
Calculate the cost of a batch job
"""
_, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=model, custom_llm_provider=custom_llm_provider
)
verbose_logger.info(
"Calculating batch cost per token. model=%s, custom_llm_provider=%s",
model,
custom_llm_provider,
)
try:
model_info: Optional[ModelInfo] = litellm.get_model_info(
model=model, custom_llm_provider=custom_llm_provider
)
except Exception:
model_info = None
if not model_info:
return 0.0, 0.0
input_cost_per_token_batches = model_info.get("input_cost_per_token_batches")
input_cost_per_token = model_info.get("input_cost_per_token")
output_cost_per_token_batches = model_info.get("output_cost_per_token_batches")
output_cost_per_token = model_info.get("output_cost_per_token")
total_prompt_cost = 0.0
total_completion_cost = 0.0
if input_cost_per_token_batches:
total_prompt_cost = usage.prompt_tokens * input_cost_per_token_batches
elif input_cost_per_token:
total_prompt_cost = (
usage.prompt_tokens * (input_cost_per_token) / 2
) # batch cost is usually half of the regular token cost
if output_cost_per_token_batches:
total_completion_cost = usage.completion_tokens * output_cost_per_token_batches
elif output_cost_per_token:
total_completion_cost = (
usage.completion_tokens * (output_cost_per_token) / 2
) # batch cost is usually half of the regular token cost
return total_prompt_cost, total_completion_cost
class RealtimeAPITokenUsageProcessor:
@staticmethod
def collect_usage_from_realtime_stream_results(
results: OpenAIRealtimeStreamList,
) -> List[Usage]:
"""
Collect usage from realtime stream results
"""
response_done_events: List[OpenAIRealtimeStreamResponseBaseObject] = cast(
List[OpenAIRealtimeStreamResponseBaseObject],
[result for result in results if result["type"] == "response.done"],
)
usage_objects: List[Usage] = []
for result in response_done_events:
usage_object = (
ResponseAPILoggingUtils._transform_response_api_usage_to_chat_usage(
result["response"].get("usage", {})
)
)
usage_objects.append(usage_object)
return usage_objects
@staticmethod
def combine_usage_objects(usage_objects: List[Usage]) -> Usage:
"""
Combine multiple Usage objects into a single Usage object, checking model keys for nested values.
"""
from litellm.types.utils import (
CompletionTokensDetails,
PromptTokensDetailsWrapper,
Usage,
)
combined = Usage()
# Sum basic token counts
for usage in usage_objects:
# Handle direct attributes by checking what exists in the model
for attr in dir(usage):
if not attr.startswith("_") and not callable(getattr(usage, attr)):
current_val = getattr(combined, attr, 0)
new_val = getattr(usage, attr, 0)
if (
new_val is not None
and isinstance(new_val, (int, float))
and isinstance(current_val, (int, float))
):
setattr(combined, attr, current_val + new_val)
# Handle nested prompt_tokens_details
if hasattr(usage, "prompt_tokens_details") and usage.prompt_tokens_details:
if (
not hasattr(combined, "prompt_tokens_details")
or not combined.prompt_tokens_details
):
combined.prompt_tokens_details = PromptTokensDetailsWrapper()
# Check what keys exist in the model's prompt_tokens_details
for attr in dir(usage.prompt_tokens_details):
if not attr.startswith("_") and not callable(
getattr(usage.prompt_tokens_details, attr)
):
current_val = getattr(combined.prompt_tokens_details, attr, 0)
new_val = getattr(usage.prompt_tokens_details, attr, 0)
if new_val is not None:
setattr(
combined.prompt_tokens_details,
attr,
current_val + new_val,
)
# Handle nested completion_tokens_details
if (
hasattr(usage, "completion_tokens_details")
and usage.completion_tokens_details
):
if (
not hasattr(combined, "completion_tokens_details")
or not combined.completion_tokens_details
):
combined.completion_tokens_details = CompletionTokensDetails()
# Check what keys exist in the model's completion_tokens_details
for attr in dir(usage.completion_tokens_details):
if not attr.startswith("_") and not callable(
getattr(usage.completion_tokens_details, attr)
):
current_val = getattr(
combined.completion_tokens_details, attr, 0
)
new_val = getattr(usage.completion_tokens_details, attr, 0)
if new_val is not None:
setattr(
combined.completion_tokens_details,
attr,
current_val + new_val,
)
return combined
@staticmethod
def collect_and_combine_usage_from_realtime_stream_results(
results: OpenAIRealtimeStreamList,
) -> Usage:
"""
Collect and combine usage from realtime stream results
"""
collected_usage_objects = (
RealtimeAPITokenUsageProcessor.collect_usage_from_realtime_stream_results(
results
)
)
combined_usage_object = RealtimeAPITokenUsageProcessor.combine_usage_objects(
collected_usage_objects
)
return combined_usage_object
@staticmethod
def create_logging_realtime_object(
usage: Usage, results: OpenAIRealtimeStreamList
) -> LiteLLMRealtimeStreamLoggingObject:
return LiteLLMRealtimeStreamLoggingObject(
usage=usage,
results=results,
)
def handle_realtime_stream_cost_calculation(
results: OpenAIRealtimeStreamList,
combined_usage_object: Usage,
custom_llm_provider: str,
litellm_model_name: str,
) -> float:
"""
Handles the cost calculation for realtime stream responses.
Pick the 'response.done' events. Calculate total cost across all 'response.done' events.
Args:
results: A list of OpenAIRealtimeStreamBaseObject objects
"""
received_model = None
potential_model_names = []
for result in results:
if result["type"] == "session.created":
received_model = cast(OpenAIRealtimeStreamSessionEvents, result)["session"][
"model"
]
potential_model_names.append(received_model)
potential_model_names.append(litellm_model_name)
input_cost_per_token = 0.0
output_cost_per_token = 0.0
for model_name in potential_model_names:
try:
_input_cost_per_token, _output_cost_per_token = generic_cost_per_token(
model=model_name,
usage=combined_usage_object,
custom_llm_provider=custom_llm_provider,
)
except Exception:
continue
input_cost_per_token += _input_cost_per_token
output_cost_per_token += _output_cost_per_token
break # exit if we find a valid model
total_cost = input_cost_per_token + output_cost_per_token
return total_cost
|