File size: 10,464 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from datetime import datetime
from typing import Any, Dict, List, Optional, Set, Union

from fastapi import HTTPException, status

from litellm._logging import verbose_proxy_logger
from litellm.proxy._types import CommonProxyErrors
from litellm.proxy.utils import PrismaClient
from litellm.types.proxy.management_endpoints.common_daily_activity import (
    BreakdownMetrics,
    DailySpendData,
    DailySpendMetadata,
    KeyMetadata,
    KeyMetricWithMetadata,
    MetricWithMetadata,
    SpendAnalyticsPaginatedResponse,
    SpendMetrics,
)


def update_metrics(existing_metrics: SpendMetrics, record: Any) -> SpendMetrics:
    """Update metrics with new record data."""
    existing_metrics.spend += record.spend
    existing_metrics.prompt_tokens += record.prompt_tokens
    existing_metrics.completion_tokens += record.completion_tokens
    existing_metrics.total_tokens += record.prompt_tokens + record.completion_tokens
    existing_metrics.cache_read_input_tokens += record.cache_read_input_tokens
    existing_metrics.cache_creation_input_tokens += record.cache_creation_input_tokens
    existing_metrics.api_requests += record.api_requests
    existing_metrics.successful_requests += record.successful_requests
    existing_metrics.failed_requests += record.failed_requests
    return existing_metrics


def update_breakdown_metrics(
    breakdown: BreakdownMetrics,
    record: Any,
    model_metadata: Dict[str, Dict[str, Any]],
    provider_metadata: Dict[str, Dict[str, Any]],
    api_key_metadata: Dict[str, Dict[str, Any]],
    entity_id_field: Optional[str] = None,
    entity_metadata_field: Optional[Dict[str, dict]] = None,
) -> BreakdownMetrics:
    """Updates breakdown metrics for a single record using the existing update_metrics function"""

    # Update model breakdown
    if record.model not in breakdown.models:
        breakdown.models[record.model] = MetricWithMetadata(
            metrics=SpendMetrics(),
            metadata=model_metadata.get(
                record.model, {}
            ),  # Add any model-specific metadata here
        )
    breakdown.models[record.model].metrics = update_metrics(
        breakdown.models[record.model].metrics, record
    )

    # Update provider breakdown
    provider = record.custom_llm_provider or "unknown"
    if provider not in breakdown.providers:
        breakdown.providers[provider] = MetricWithMetadata(
            metrics=SpendMetrics(),
            metadata=provider_metadata.get(
                provider, {}
            ),  # Add any provider-specific metadata here
        )
    breakdown.providers[provider].metrics = update_metrics(
        breakdown.providers[provider].metrics, record
    )

    # Update api key breakdown
    if record.api_key not in breakdown.api_keys:
        breakdown.api_keys[record.api_key] = KeyMetricWithMetadata(
            metrics=SpendMetrics(),
            metadata=KeyMetadata(
                key_alias=api_key_metadata.get(record.api_key, {}).get(
                    "key_alias", None
                ),
                team_id=api_key_metadata.get(record.api_key, {}).get("team_id", None),
            ),  # Add any api_key-specific metadata here
        )
    breakdown.api_keys[record.api_key].metrics = update_metrics(
        breakdown.api_keys[record.api_key].metrics, record
    )

    # Update entity-specific metrics if entity_id_field is provided
    if entity_id_field:
        entity_value = getattr(record, entity_id_field, None)
        if entity_value:
            if entity_value not in breakdown.entities:
                breakdown.entities[entity_value] = MetricWithMetadata(
                    metrics=SpendMetrics(),
                    metadata=entity_metadata_field.get(entity_value, {})
                    if entity_metadata_field
                    else {},
                )
            breakdown.entities[entity_value].metrics = update_metrics(
                breakdown.entities[entity_value].metrics, record
            )

    return breakdown


async def get_api_key_metadata(
    prisma_client: PrismaClient,
    api_keys: Set[str],
) -> Dict[str, Dict[str, Any]]:
    """Update api key metadata for a single record."""
    key_records = await prisma_client.db.litellm_verificationtoken.find_many(
        where={"token": {"in": list(api_keys)}}
    )
    return {
        k.token: {"key_alias": k.key_alias, "team_id": k.team_id} for k in key_records
    }


async def get_daily_activity(
    prisma_client: Optional[PrismaClient],
    table_name: str,
    entity_id_field: str,
    entity_id: Optional[Union[str, List[str]]],
    entity_metadata_field: Optional[Dict[str, dict]],
    start_date: Optional[str],
    end_date: Optional[str],
    model: Optional[str],
    api_key: Optional[str],
    page: int,
    page_size: int,
    exclude_entity_ids: Optional[List[str]] = None,
) -> SpendAnalyticsPaginatedResponse:
    """Common function to get daily activity for any entity type."""
    if prisma_client is None:
        raise HTTPException(
            status_code=500,
            detail={"error": CommonProxyErrors.db_not_connected_error.value},
        )

    if start_date is None or end_date is None:
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail={"error": "Please provide start_date and end_date"},
        )

    try:
        # Build filter conditions
        where_conditions: Dict[str, Any] = {
            "date": {
                "gte": start_date,
                "lte": end_date,
            }
        }

        if model:
            where_conditions["model"] = model
        if api_key:
            where_conditions["api_key"] = api_key
        if entity_id is not None:
            if isinstance(entity_id, list):
                where_conditions[entity_id_field] = {"in": entity_id}
            else:
                where_conditions[entity_id_field] = entity_id
        if exclude_entity_ids:
            where_conditions.setdefault(entity_id_field, {})["not"] = {
                "in": exclude_entity_ids
            }

        # Get total count for pagination
        total_count = await getattr(prisma_client.db, table_name).count(
            where=where_conditions
        )

        # Fetch paginated results
        daily_spend_data = await getattr(prisma_client.db, table_name).find_many(
            where=where_conditions,
            order=[
                {"date": "desc"},
            ],
            skip=(page - 1) * page_size,
            take=page_size,
        )

        # Get all unique API keys from the spend data
        api_keys = set()
        for record in daily_spend_data:
            if record.api_key:
                api_keys.add(record.api_key)

        # Fetch key aliases in bulk
        api_key_metadata: Dict[str, Dict[str, Any]] = {}
        model_metadata: Dict[str, Dict[str, Any]] = {}
        provider_metadata: Dict[str, Dict[str, Any]] = {}
        if api_keys:
            api_key_metadata = await get_api_key_metadata(prisma_client, api_keys)

        # Process results
        results = []
        total_metrics = SpendMetrics()
        grouped_data: Dict[str, Dict[str, Any]] = {}

        for record in daily_spend_data:
            date_str = record.date
            if date_str not in grouped_data:
                grouped_data[date_str] = {
                    "metrics": SpendMetrics(),
                    "breakdown": BreakdownMetrics(),
                }

            # Update metrics
            grouped_data[date_str]["metrics"] = update_metrics(
                grouped_data[date_str]["metrics"], record
            )
            # Update breakdowns
            grouped_data[date_str]["breakdown"] = update_breakdown_metrics(
                grouped_data[date_str]["breakdown"],
                record,
                model_metadata,
                provider_metadata,
                api_key_metadata,
                entity_id_field=entity_id_field,
                entity_metadata_field=entity_metadata_field,
            )

            # Update total metrics
            total_metrics.spend += record.spend
            total_metrics.prompt_tokens += record.prompt_tokens
            total_metrics.completion_tokens += record.completion_tokens
            total_metrics.total_tokens += (
                record.prompt_tokens + record.completion_tokens
            )
            total_metrics.cache_read_input_tokens += record.cache_read_input_tokens
            total_metrics.cache_creation_input_tokens += (
                record.cache_creation_input_tokens
            )
            total_metrics.api_requests += record.api_requests
            total_metrics.successful_requests += record.successful_requests
            total_metrics.failed_requests += record.failed_requests

        # Convert grouped data to response format
        for date_str, data in grouped_data.items():
            results.append(
                DailySpendData(
                    date=datetime.strptime(date_str, "%Y-%m-%d").date(),
                    metrics=data["metrics"],
                    breakdown=data["breakdown"],
                )
            )

        # Sort results by date
        results.sort(key=lambda x: x.date, reverse=True)

        return SpendAnalyticsPaginatedResponse(
            results=results,
            metadata=DailySpendMetadata(
                total_spend=total_metrics.spend,
                total_prompt_tokens=total_metrics.prompt_tokens,
                total_completion_tokens=total_metrics.completion_tokens,
                total_tokens=total_metrics.total_tokens,
                total_api_requests=total_metrics.api_requests,
                total_successful_requests=total_metrics.successful_requests,
                total_failed_requests=total_metrics.failed_requests,
                total_cache_read_input_tokens=total_metrics.cache_read_input_tokens,
                total_cache_creation_input_tokens=total_metrics.cache_creation_input_tokens,
                page=page,
                total_pages=-(-total_count // page_size),  # Ceiling division
                has_more=(page * page_size) < total_count,
            ),
        )

    except Exception as e:
        verbose_proxy_logger.exception(f"Error fetching daily activity: {str(e)}")
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail={"error": f"Failed to fetch analytics: {str(e)}"},
        )