File size: 15,748 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import asyncio
import json
import uuid
from datetime import datetime
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Tuple, Union

import httpx
from fastapi import HTTPException, Request, status
from fastapi.responses import Response, StreamingResponse

import litellm
from litellm._logging import verbose_proxy_logger
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.proxy._types import ProxyException, UserAPIKeyAuth
from litellm.proxy.auth.auth_utils import check_response_size_is_safe
from litellm.proxy.common_utils.callback_utils import (
    get_logging_caching_headers,
    get_remaining_tokens_and_requests_from_request_data,
)
from litellm.proxy.route_llm_request import route_request
from litellm.proxy.utils import ProxyLogging
from litellm.router import Router

if TYPE_CHECKING:
    from litellm.proxy.proxy_server import ProxyConfig as _ProxyConfig

    ProxyConfig = _ProxyConfig
else:
    ProxyConfig = Any
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request


class ProxyBaseLLMRequestProcessing:
    def __init__(self, data: dict):
        self.data = data

    @staticmethod
    def get_custom_headers(
        *,
        user_api_key_dict: UserAPIKeyAuth,
        call_id: Optional[str] = None,
        model_id: Optional[str] = None,
        cache_key: Optional[str] = None,
        api_base: Optional[str] = None,
        version: Optional[str] = None,
        model_region: Optional[str] = None,
        response_cost: Optional[Union[float, str]] = None,
        hidden_params: Optional[dict] = None,
        fastest_response_batch_completion: Optional[bool] = None,
        request_data: Optional[dict] = {},
        timeout: Optional[Union[float, int, httpx.Timeout]] = None,
        **kwargs,
    ) -> dict:
        exclude_values = {"", None, "None"}
        hidden_params = hidden_params or {}
        headers = {
            "x-litellm-call-id": call_id,
            "x-litellm-model-id": model_id,
            "x-litellm-cache-key": cache_key,
            "x-litellm-model-api-base": (
                api_base.split("?")[0] if api_base else None
            ),  # don't include query params, risk of leaking sensitive info
            "x-litellm-version": version,
            "x-litellm-model-region": model_region,
            "x-litellm-response-cost": str(response_cost),
            "x-litellm-key-tpm-limit": str(user_api_key_dict.tpm_limit),
            "x-litellm-key-rpm-limit": str(user_api_key_dict.rpm_limit),
            "x-litellm-key-max-budget": str(user_api_key_dict.max_budget),
            "x-litellm-key-spend": str(user_api_key_dict.spend),
            "x-litellm-response-duration-ms": str(
                hidden_params.get("_response_ms", None)
            ),
            "x-litellm-overhead-duration-ms": str(
                hidden_params.get("litellm_overhead_time_ms", None)
            ),
            "x-litellm-fastest_response_batch_completion": (
                str(fastest_response_batch_completion)
                if fastest_response_batch_completion is not None
                else None
            ),
            "x-litellm-timeout": str(timeout) if timeout is not None else None,
            **{k: str(v) for k, v in kwargs.items()},
        }
        if request_data:
            remaining_tokens_header = (
                get_remaining_tokens_and_requests_from_request_data(request_data)
            )
            headers.update(remaining_tokens_header)

            logging_caching_headers = get_logging_caching_headers(request_data)
            if logging_caching_headers:
                headers.update(logging_caching_headers)

        try:
            return {
                key: str(value)
                for key, value in headers.items()
                if value not in exclude_values
            }
        except Exception as e:
            verbose_proxy_logger.error(f"Error setting custom headers: {e}")
            return {}

    async def common_processing_pre_call_logic(
        self,
        request: Request,
        general_settings: dict,
        user_api_key_dict: UserAPIKeyAuth,
        proxy_logging_obj: ProxyLogging,
        proxy_config: ProxyConfig,
        route_type: Literal[
            "acompletion",
            "aresponses",
            "_arealtime",
            "aget_responses",
            "adelete_responses",
        ],
        version: Optional[str] = None,
        user_model: Optional[str] = None,
        user_temperature: Optional[float] = None,
        user_request_timeout: Optional[float] = None,
        user_max_tokens: Optional[int] = None,
        user_api_base: Optional[str] = None,
        model: Optional[str] = None,
    ) -> Tuple[dict, LiteLLMLoggingObj]:
        self.data = await add_litellm_data_to_request(
            data=self.data,
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_config=proxy_config,
        )

        self.data["model"] = (
            general_settings.get("completion_model", None)  # server default
            or user_model  # model name passed via cli args
            or model  # for azure deployments
            or self.data.get("model", None)  # default passed in http request
        )

        # override with user settings, these are params passed via cli
        if user_temperature:
            self.data["temperature"] = user_temperature
        if user_request_timeout:
            self.data["request_timeout"] = user_request_timeout
        if user_max_tokens:
            self.data["max_tokens"] = user_max_tokens
        if user_api_base:
            self.data["api_base"] = user_api_base

        ### MODEL ALIAS MAPPING ###
        # check if model name in model alias map
        # get the actual model name
        if (
            isinstance(self.data["model"], str)
            and self.data["model"] in litellm.model_alias_map
        ):
            self.data["model"] = litellm.model_alias_map[self.data["model"]]

        self.data["litellm_call_id"] = request.headers.get(
            "x-litellm-call-id", str(uuid.uuid4())
        )
        ### CALL HOOKS ### - modify/reject incoming data before calling the model
        self.data = await proxy_logging_obj.pre_call_hook(  # type: ignore
            user_api_key_dict=user_api_key_dict, data=self.data, call_type="completion"
        )

        ## LOGGING OBJECT ## - initialize logging object for logging success/failure events for call
        ## IMPORTANT Note: - initialize this before running pre-call checks. Ensures we log rejected requests to langfuse.
        logging_obj, self.data = litellm.utils.function_setup(
            original_function=route_type,
            rules_obj=litellm.utils.Rules(),
            start_time=datetime.now(),
            **self.data,
        )

        self.data["litellm_logging_obj"] = logging_obj

        return self.data, logging_obj

    async def base_process_llm_request(
        self,
        request: Request,
        fastapi_response: Response,
        user_api_key_dict: UserAPIKeyAuth,
        route_type: Literal[
            "acompletion",
            "aresponses",
            "_arealtime",
            "aget_responses",
            "adelete_responses",
        ],
        proxy_logging_obj: ProxyLogging,
        general_settings: dict,
        proxy_config: ProxyConfig,
        select_data_generator: Callable,
        llm_router: Optional[Router] = None,
        model: Optional[str] = None,
        user_model: Optional[str] = None,
        user_temperature: Optional[float] = None,
        user_request_timeout: Optional[float] = None,
        user_max_tokens: Optional[int] = None,
        user_api_base: Optional[str] = None,
        version: Optional[str] = None,
    ) -> Any:
        """
        Common request processing logic for both chat completions and responses API endpoints
        """
        verbose_proxy_logger.debug(
            "Request received by LiteLLM:\n{}".format(json.dumps(self.data, indent=4)),
        )

        self.data, logging_obj = await self.common_processing_pre_call_logic(
            request=request,
            general_settings=general_settings,
            proxy_logging_obj=proxy_logging_obj,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_config=proxy_config,
            user_model=user_model,
            user_temperature=user_temperature,
            user_request_timeout=user_request_timeout,
            user_max_tokens=user_max_tokens,
            user_api_base=user_api_base,
            model=model,
            route_type=route_type,
        )

        tasks = []
        tasks.append(
            proxy_logging_obj.during_call_hook(
                data=self.data,
                user_api_key_dict=user_api_key_dict,
                call_type=ProxyBaseLLMRequestProcessing._get_pre_call_type(
                    route_type=route_type  # type: ignore
                ),
            )
        )

        ### ROUTE THE REQUEST ###
        # Do not change this - it should be a constant time fetch - ALWAYS
        llm_call = await route_request(
            data=self.data,
            route_type=route_type,
            llm_router=llm_router,
            user_model=user_model,
        )
        tasks.append(llm_call)

        # wait for call to end
        llm_responses = asyncio.gather(
            *tasks
        )  # run the moderation check in parallel to the actual llm api call

        responses = await llm_responses

        response = responses[1]

        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""
        response_cost = hidden_params.get("response_cost", None) or ""
        fastest_response_batch_completion = hidden_params.get(
            "fastest_response_batch_completion", None
        )
        additional_headers: dict = hidden_params.get("additional_headers", {}) or {}

        # Post Call Processing
        if llm_router is not None:
            self.data["deployment"] = llm_router.get_deployment(model_id=model_id)
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=self.data.get("litellm_call_id", ""), status="success"
            )
        )
        if (
            "stream" in self.data and self.data["stream"] is True
        ):  # use generate_responses to stream responses
            custom_headers = ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                call_id=logging_obj.litellm_call_id,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                response_cost=response_cost,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
                fastest_response_batch_completion=fastest_response_batch_completion,
                request_data=self.data,
                hidden_params=hidden_params,
                **additional_headers,
            )
            selected_data_generator = select_data_generator(
                response=response,
                user_api_key_dict=user_api_key_dict,
                request_data=self.data,
            )
            return StreamingResponse(
                selected_data_generator,
                media_type="text/event-stream",
                headers=custom_headers,
            )

        ### CALL HOOKS ### - modify outgoing data
        response = await proxy_logging_obj.post_call_success_hook(
            data=self.data, user_api_key_dict=user_api_key_dict, response=response
        )

        hidden_params = (
            getattr(response, "_hidden_params", {}) or {}
        )  # get any updated response headers
        additional_headers = hidden_params.get("additional_headers", {}) or {}

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                call_id=logging_obj.litellm_call_id,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                response_cost=response_cost,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
                fastest_response_batch_completion=fastest_response_batch_completion,
                request_data=self.data,
                hidden_params=hidden_params,
                **additional_headers,
            )
        )
        await check_response_size_is_safe(response=response)

        return response

    async def _handle_llm_api_exception(
        self,
        e: Exception,
        user_api_key_dict: UserAPIKeyAuth,
        proxy_logging_obj: ProxyLogging,
        version: Optional[str] = None,
    ):
        """Raises ProxyException (OpenAI API compatible) if an exception is raised"""
        verbose_proxy_logger.exception(
            f"litellm.proxy.proxy_server._handle_llm_api_exception(): Exception occured - {str(e)}"
        )
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict,
            original_exception=e,
            request_data=self.data,
        )
        litellm_debug_info = getattr(e, "litellm_debug_info", "")
        verbose_proxy_logger.debug(
            "\033[1;31mAn error occurred: %s %s\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`",
            e,
            litellm_debug_info,
        )

        timeout = getattr(
            e, "timeout", None
        )  # returns the timeout set by the wrapper. Used for testing if model-specific timeout are set correctly
        _litellm_logging_obj: Optional[LiteLLMLoggingObj] = self.data.get(
            "litellm_logging_obj", None
        )
        custom_headers = ProxyBaseLLMRequestProcessing.get_custom_headers(
            user_api_key_dict=user_api_key_dict,
            call_id=(
                _litellm_logging_obj.litellm_call_id if _litellm_logging_obj else None
            ),
            version=version,
            response_cost=0,
            model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            request_data=self.data,
            timeout=timeout,
        )
        headers = getattr(e, "headers", {}) or {}
        headers.update(custom_headers)

        if isinstance(e, HTTPException):
            raise ProxyException(
                message=getattr(e, "detail", str(e)),
                type=getattr(e, "type", "None"),
                param=getattr(e, "param", "None"),
                code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
                headers=headers,
            )
        error_msg = f"{str(e)}"
        raise ProxyException(
            message=getattr(e, "message", error_msg),
            type=getattr(e, "type", "None"),
            param=getattr(e, "param", "None"),
            openai_code=getattr(e, "code", None),
            code=getattr(e, "status_code", 500),
            headers=headers,
        )

    @staticmethod
    def _get_pre_call_type(
        route_type: Literal["acompletion", "aresponses"],
    ) -> Literal["completion", "responses"]:
        if route_type == "acompletion":
            return "completion"
        elif route_type == "aresponses":
            return "responses"