File size: 9,336 Bytes
5147122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88dd5ac
5147122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import streamlit as st
import pickle
import pandas as pd
from PIL import Image
import base64

# Streamlit App
st.set_page_config(page_title="Movie Select", page_icon=":briefcase:", layout="wide")
st.markdown('<div class="title">Movie Select - Discover Your Movie Mojo</div>', unsafe_allow_html=True)

# Load the movies dictionary and similarity tags
movies_dict = pickle.load(open('notebook/movies_dict.pkl', 'rb'))
movies_dict = pd.DataFrame(movies_dict)
similarity_tags = pickle.load(open('notebook/similarity_tags.pkl', 'rb'))
poster = pickle.load(open('notebook/poster_dict.pkl', 'rb'))
similarity_main_tags = pickle.load(open('notebook/similarity_main_tags.pkl', 'rb'))

# CSS for styling
st.markdown(
    f"""
    <style>
    .stApp {{
        background-image: url("https://i.postimg.cc/d114JH9w/image-blurr.jpg");
        background-size: cover;
    }}
    .title {{
        font-size: 36px;
        font-weight: bold;
        color: #FFFFFF;
        text-align: center;
        text-shadow: 2px 2px #000000;
    }}
    .subheader {{
        font-size: 24px;
        font-weight: bold;
        color: #FFFFFF;
        text-align: center;
        text-shadow: 1px 1px #000000;
    }}
    .movie-title {{
        font-size: 16px;
        color: #FFFFFF;
        text-align: center;
        text-shadow: 1px 1px #000000;
        padding: 5px;
        background-color: rgba(0, 0, 0, 0.5);
        border-radius: 5px;
        margin-bottom: 10px;
    }}
    .shaded-box {{
        background-color: rgba(0, 0, 0, 0.5);
        padding: 10px;
        border-radius: 10px;
        margin: 10px 0;
    }}
    .movie-poster {{
        width: 150px; /* Set width in pixels */
        height: 225px; /* Set height in pixels */
        object-fit: cover; /* Ensures the image covers the whole area */
        border-radius: 10px;
    }}
    .movie-container {{
        display: flex;
        flex-direction: column;
        align-items: center;
    }}
    .stButton button {{
        width: 100%;
        background-color: #FF4B4B; /* Set button color */
        color: white;
        font-size: 18px;
        padding: 10px;
        border: none;
        border-radius: 5px;
        cursor: pointer;
    }}
    .stButton button:hover {{
        background-color: #FF0000; /* Hover color */
    }}
    .stSelectbox div[data-baseweb="select"] {{
        background-color: rgba(0, 0, 0, 0.5);
    }}
    .stSelectbox div[data-baseweb="select"] div[role="combobox"] {{
        background-color: rgba(0, 0, 0, 0.5);
        color: #FFFFFF;
    }}
    .stSelectbox div[data-baseweb="select"] div[role="listbox"] {{
        background-color: rgba(0, 0, 0, 0.5);
        color: #FFFFFF;
    }}
    .stSelectbox div[data-baseweb="select"] div[role="listbox"] ul {{
        background-color: rgba(0, 0, 0, 0.5);
        color: #FFFFFF;
    }}
    .stSelectbox div[data-baseweb="select"] div[role="listbox"] ul li {{
        background-color: rgba(0, 0, 0, 0.5);
        color: #FFFFFF;
    }}
    .vertical-divider {{
        border-left: 2px solid white;
        height: 100%;
        position: absolute;
        left: 50%;
        margin-left: -3px;
        top: 0;
    }}
    </style>
    """,
    unsafe_allow_html=True
)

# Function to recommend movies
def recommend(movie, similarity, exclude_movies=set(), num_recommendations=12, sort_by_rating=False, sort_by_revenue=False):
    movie_index = movies_dict[movies_dict['title'] == movie].index[0]
    distances = similarity[movie_index]
    movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:112]

    recommended_movies = []
    recommended_movies_poster = []
    for i in movies_list:
        movie_title = movies_dict.iloc[i[0]].title
        if movie_title not in exclude_movies:
            recommended_movies.append(movie_title)
            recommended_movies_poster.append(poster[movie_title])
        if len(recommended_movies) == num_recommendations:
            break
    
    # Combine the movies and their posters into a list of tuples
    combined_list = list(zip(recommended_movies, recommended_movies_poster))
    
    # Sort the combined list by IMDB rating and then by revenue if specified
    if sort_by_rating:
        combined_list = sorted(
            combined_list,
            key=lambda x: movies_dict[movies_dict['title'] == x[0]]['IMDB_Rating'].values[0],
            reverse=(sort_by_rating == "Descending")
        )
    if sort_by_revenue:
        combined_list = sorted(
            combined_list,
            key=lambda x: movies_dict[movies_dict['title'] == x[0]]['revenue'].values[0],
            reverse=(sort_by_revenue == "Descending")
        )
    
    # Separate the sorted movies and posters back into two lists
    if combined_list:
        recommended_movies, recommended_movies_poster = zip(*combined_list)
        return list(recommended_movies), list(recommended_movies_poster)
    else:
        return [], []

# Sidebar for filters
st.sidebar.header("Filter Recommendations")
st.sidebar.markdown(
    """
    <style>
    .sidebar-content {
        position: fixed;
        top: 20%;
        width: 20%;
    }
    </style>
    """,
    unsafe_allow_html=True
)
num_recommendations = st.sidebar.number_input("Number of Recommendations", min_value=12, max_value=51, value=12)
sort_by_rating = st.sidebar.radio("Sort by IMDB Rating", ("None", "Ascending", "Descending"))
release_category = st.sidebar.selectbox("Movie Generation", ["All", "New", "Old", "Classic"])
sort_by_revenue = st.sidebar.radio("Sort by Revenue", ("None", "Ascending", "Descending"))

# Check if the 'Certificate' column exists in the dataframe
if 'Certificate' in movies_dict.columns:
    certificate = st.sidebar.selectbox("Certificate", ["All"] + list(movies_dict['Certificate'].dropna().unique()))
else:
    certificate = "All"

# Filter movies_dict based on sidebar selections
filtered_movies_dict = movies_dict.copy()
if release_category == "New":
    filtered_movies_dict = filtered_movies_dict[filtered_movies_dict['release_year'] >= 2010]
elif release_category == "Old":
    filtered_movies_dict = filtered_movies_dict[(filtered_movies_dict['release_year'] >= 1980) & (filtered_movies_dict['release_year'] < 2010)]
elif release_category == "Classic":
    filtered_movies_dict = filtered_movies_dict[filtered_movies_dict['release_year'] < 1980]

if certificate != "All":
    filtered_movies_dict = filtered_movies_dict[filtered_movies_dict['Certificate'] == certificate]

# Movie selection box and button on the same line
col1, col2 = st.columns([3, 1])
with col1:
    selected_movie_name = st.selectbox('', filtered_movies_dict['title'].values)
with col2:
    st.markdown("<br>", unsafe_allow_html=True)  # Add a break to align the button properly
    show_recommendation = st.button('Show Recommendation', use_container_width=True)

if show_recommendation:
    # Get the first set of recommendations
    recommended_movie_names_1, recommended_movie_posters_1 = recommend(
        selected_movie_name, similarity_main_tags, num_recommendations=num_recommendations, sort_by_rating=sort_by_rating, sort_by_revenue=sort_by_revenue
    )

    # Get the second set of recommendations, excluding the first set
    recommended_movie_names_2, recommended_movie_posters_2 = recommend(
        selected_movie_name, similarity_tags, set(recommended_movie_names_1), num_recommendations=num_recommendations, sort_by_rating=sort_by_rating, sort_by_revenue=sort_by_revenue
    )

    col1, col2, col3 = st.columns([1, 0.1, 1])

    with col1:
        st.markdown('<div class="subheader shaded-box">Top Picks for You</div>', unsafe_allow_html=True)
        for i in range(0, len(recommended_movie_names_1), 3):
            row = st.columns(3)
            for j in range(3):
                if i + j < len(recommended_movie_names_1):
                    with row[j]:
                        movie_name = recommended_movie_names_1[i + j]
                        movie_poster = recommended_movie_posters_1[i + j]
                        google_search_url = f"https://www.google.com/search?q={movie_name}+watch+now"
                        st.markdown(f'<div class="movie-container"><a href="{google_search_url}" target="_blank"><img src="{movie_poster}" class="movie-poster"></a><div class="movie-title">{movie_name}</div></div>', unsafe_allow_html=True)
            st.markdown("""---""")

    with col2:
        st.markdown('<div class="vertical-divider"></div>', unsafe_allow_html=True)

    with col3:
        st.markdown('<div class="subheader shaded-box">Some Other Suggestions</div>', unsafe_allow_html=True)
        for i in range(0, len(recommended_movie_names_2), 3):
            row = st.columns(3)
            for j in range(3):
                if i + j < len(recommended_movie_names_2):
                    with row[j]:
                        movie_name = recommended_movie_names_2[i + j]
                        movie_poster = recommended_movie_posters_2[i + j]
                        google_search_url = f"https://www.google.com/search?q={movie_name}+watch+now"
                        st.markdown(f'<div class="movie-container"><a href="{google_search_url}" target="_blank"><img src="{movie_poster}" class="movie-poster"></a><div class="movie-title">{movie_name}</div></div>', unsafe_allow_html=True)
            st.markdown("""---""")