File size: 2,803 Bytes
4ec7aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Import necessary modules
import os
import sys
import pandas as pd

from src.exception import CustomException
from src.logger import logging

from sklearn.model_selection import train_test_split
from dataclasses import dataclass

from src.components.data_transformation import DataTransformation, DataTransformationConfig
from src.components.model_trainer import ModelTrainerConfig, ModelTrainer

# Define a configuration class for data ingestion settings
@dataclass
class DataIngestionConfig:
    train_data_path: str = os.path.join('artifacts', "train.csv")
    test_data_path: str = os.path.join('artifacts', "test.csv")
    raw_data_path: str = os.path.join('artifacts', "data.csv")

# Define the main class responsible for data ingestion
class DataIngestion:
    def __init__(self):
        self.ingestion_config = DataIngestionConfig()

    # Function to initiate data ingestion
    def initiate_data_ingestion(self):
        logging.info("Entered the Data Ingestion Method and Components")
        
        try:
            # Read the dataset into a dataframe
            df = pd.read_csv('EDA/data/data_modified.csv')
            logging.info('Read the Dataset as Dataframe')

            # Create the directory for saving data if it doesn't exist
            os.makedirs(os.path.dirname(self.ingestion_config.train_data_path), exist_ok=True)

            # Save the raw data to a CSV file
            df.to_csv(self.ingestion_config.raw_data_path, index=False, header=True)
            
            logging.info("Train Test Split Initiated")

            # Split the dataset into training and testing sets
            train_set, test_set = train_test_split(df, test_size=0.2, random_state=42)
            train_set.to_csv(self.ingestion_config.train_data_path, index=False, header=True)
            test_set.to_csv(self.ingestion_config.test_data_path, index=False, header=True)

            logging.info("Ingestion of the Data is Completed")

            # Return the paths of the training and testing data
            return (
                self.ingestion_config.train_data_path,
                self.ingestion_config.test_data_path
            )
        
        except Exception as e:
            # Raise a custom exception if an error occurs
            raise CustomException(e, sys)

# Main execution block to run data ingestion
if __name__ == "__main__":

    obj = DataIngestion()
    train_data, test_data = obj.initiate_data_ingestion()

    data_transformation = DataTransformation()
    train_arr, test_arr, preprocessor_file_path = data_transformation.initiate_data_transformation(train_data, test_data)

    modeltrainer = ModelTrainer()
    print(modeltrainer.initiate_model_trainer(train_arr, test_arr))