Spaces:
Sleeping
Sleeping
File size: 14,793 Bytes
235a096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import torch
import torch.nn as nn
import math
from transformers.modeling_outputs import CausalLMOutputWithPast
# 1. Custom Configuration Class
class CustomConfig:
def __init__(self):
# Architecture Parameters
self.vocab_size = 49152
self.hidden_size = 576 # d_model
self.intermediate_size = 1536 # FFN dimension
self.num_hidden_layers = 30 # Number of decoder layers
self.num_attention_heads = 9 # Query heads
self.num_key_value_heads = 3 # Key/Value heads
self.max_position_embeddings = 2048
self.rms_norm_eps = 1e-5
self.rope_theta = 10000.0 # Rotary embedding base
# Tokenizer/Generation Params
self.pad_token_id = None
self.bos_token_id = 0
self.eos_token_id = 0
def to_dict(self):
# Serialize the config parameters
return {k: v for k, v in self.__dict__.items() if not k.startswith("_")}
# 2. Custom RMS Normalization
class CustomRMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.eps = eps
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x)
# 3. Rotary Positional Embeddings
class RotaryEmbedding(nn.Module):
def __init__(self, dim, max_seq_len=2048, theta=10000.0):
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self._set_cos_sin_cache(max_seq_len)
def _set_cos_sin_cache(self, seq_len):
t = torch.arange(seq_len, device=self.inv_freq.device)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :])
self.register_buffer("sin_cached", emb.sin()[None, None, :, :])
def forward(self, x, seq_len):
if seq_len > self.cos_cached.shape[2]:
self._set_cos_sin_cache(seq_len)
return self.cos_cached[:, :, :seq_len], self.sin_cached[:, :, :seq_len]
# 4. Attention Layer with Grouped Query Attention
class CustomAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_kv_heads = config.num_key_value_heads
# Projections
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
# Rotary embeddings
self.rotary_emb = RotaryEmbedding(
self.head_dim,
max_seq_len=config.max_position_embeddings,
theta=config.rope_theta
)
def forward(self, x, attention_mask=None):
batch_size, seq_len, _ = x.shape
# Project queries/keys/values
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
# Reshape for attention computation
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
# Apply rotary embeddings
cos, sin = self.rotary_emb(x, seq_len=seq_len)
q, k = apply_rotary_pos_emb(q, k, cos, sin)
# Repeat keys and values to match the number of query heads
repeat_factor = self.num_heads // self.num_kv_heads
k = k.repeat_interleave(repeat_factor, dim=1)
v = v.repeat_interleave(repeat_factor, dim=1)
# Attention scores
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim)
# Apply attention mask
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = torch.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, v)
# Reshape and project back
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, seq_len, self.hidden_size)
return self.o_proj(attn_output)
# 5. MLP Layer
class CustomMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
gate = self.act_fn(self.gate_proj(x))
up = self.up_proj(x)
return self.down_proj(gate * up)
# 6. Transformer Decoder Layer
class DecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = CustomAttention(config)
self.mlp = CustomMLP(config)
self.input_norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attn_norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, x, attention_mask=None):
# Self-attention
residual = x
x = self.input_norm(x)
x = self.self_attn(x, attention_mask)
x = residual + x
# MLP
residual = x
x = self.post_attn_norm(x)
x = self.mlp(x)
x = residual + x
return x
# 7. Full Model
class CustomLLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.lm_head.weight = self.embed_tokens.weight # Tie the weights To reduce param
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, input_ids, attention_mask=None, labels=None):
x = self.embed_tokens(input_ids)
batch_size, seq_len = input_ids.shape
# Create causal mask
causal_mask = torch.full((seq_len, seq_len), float("-inf"), device=x.device)
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask = causal_mask[None, None, :, :] # Shape: [1, 1, seq_len, seq_len]
# Combine with padding mask
if attention_mask is not None:
padding_mask = (1.0 - attention_mask.float()) * torch.finfo(x.dtype).min
padding_mask = padding_mask.view(batch_size, 1, 1, seq_len)
combined_mask = causal_mask + padding_mask
else:
combined_mask = causal_mask
# Process through decoder layers
for layer in self.layers:
x = layer(x, attention_mask=combined_mask)
x = self.norm(x)
logits = self.lm_head(x)
loss = None
if labels is not None:
# Shift logits and labels for causal LM
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=None,
hidden_states=None,
attentions=None,
)
def generate(
self,
input_ids: torch.Tensor,
max_new_tokens: int = 100,
temperature: float = 1.0,
top_k: int = None,
top_p: float = None,
repetition_penalty: float = 1.0,
eos_token_id: int = None,
pad_token_id: int = None,
):
"""
Generates text using various decoding strategies.
Args:
input_ids: Input token IDs of shape (batch_size, seq_len)
max_new_tokens: Maximum number of tokens to generate
temperature: Sampling temperature (higher = more random)
top_k: Top-k sampling cutoff
top_p: Nucleus sampling cutoff
repetition_penalty: Penalty for repeated tokens (1.0 = no penalty)
eos_token_id: Stop generation when this token is produced
pad_token_id: Padding token ID for sequence termination
Returns:
Generated sequence of token IDs
"""
# Ensure model is in eval mode
self.eval()
# Move inputs to model device
input_ids = input_ids.to(self.embed_tokens.weight.device)
batch_size = input_ids.size(0)
# Storage for generated sequences
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
past_key_values = None # Could implement KV caching here for efficiency
for _ in range(max_new_tokens):
# Forward pass (only compute last logits for efficiency)
with torch.no_grad():
outputs = self(input_ids)
next_token_logits = outputs.logits[:, -1, :]
# Repetition penalty
if repetition_penalty != 1.0:
next_token_logits = self._apply_repetition_penalty(
next_token_logits, input_ids, repetition_penalty
)
# Temperature scaling
if temperature != 1.0:
next_token_logits = next_token_logits / temperature
# Top-k filtering
if top_k is not None and top_k > 0:
top_k_values, _ = torch.topk(next_token_logits, top_k)
min_top_k = top_k_values[:, -1].unsqueeze(-1)
next_token_logits = torch.where(
next_token_logits < min_top_k,
torch.tensor(-float('inf')).to(next_token_logits.device),
next_token_logits
)
# Top-p (nucleus) sampling
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above threshold
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
next_token_logits[indices_to_remove] = -float('inf')
# Convert logits to probabilities
probs = torch.softmax(next_token_logits, dim=-1)
# Sample next tokens
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# Update sequences
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1)
# Check for EOS tokens
if eos_token_id is not None:
unfinished = (next_tokens != eos_token_id).long() * unfinished_sequences
unfinished_sequences = unfinished
if unfinished_sequences.max() == 0:
break
# Pad sequences if requested
if pad_token_id is not None and eos_token_id is not None:
input_ids = self._pad_sequences(input_ids, eos_token_id, pad_token_id)
return input_ids
def _apply_repetition_penalty(self, logits, sequences, penalty):
"""Applies repetition penalty to logits"""
score = torch.gather(logits, 1, sequences)
score = torch.where(score < 0, score * penalty, score / penalty)
logits.scatter_(1, sequences, score)
return logits
def _pad_sequences(self, sequences, eos_token_id, pad_token_id):
"""Replace tokens after EOS with pad token"""
# Create mask of positions after EOS
eos_positions = (sequences == eos_token_id).int().argmax(dim=-1)
padding_mask = torch.arange(sequences.size(1), device=sequences.device) > eos_positions.unsqueeze(-1)
# Apply padding
sequences[padding_mask] = pad_token_id
return sequences
# Helper function for rotary embeddings
def apply_rotary_pos_emb(q, k, cos, sin):
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
'''
# Usage
config = CustomConfig()
model = CustomLLM(config)
# Verify parameters
total_params = sum(p.numel() for p in model.parameters())
print(f"Total parameters: {total_params/1e6:.2f}M") # Should output ~135.00M
print(model)
# Test forward pass after fix
input_ids = torch.randint(0, config.vocab_size, (1, 256))
output = model(input_ids)
print(output.shape) # Expected output: (1, 256, 49152)
# Initialize model
config = CustomConfig()
model = CustomLLM(config)
# Generate text
prompt = torch.tensor([[config.bos_token_id]]) # Start token
generated = model.generate(
prompt,
max_new_tokens=50,
temperature=0.7,
top_p=0.9,
eos_token_id=config.eos_token_id,
pad_token_id=config.pad_token_id
)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
tokenizer.pad_token = tokenizer.eos_token # For padding
# Decode tokens
generated_text = tokenizer.decode(generated[0].tolist())
print(prompt)
print(generated_text)
'''
|