Spaces:
Runtime error
Runtime error
File size: 7,119 Bytes
02c83d1 edcd422 4aec781 02c83d1 a242f3f 8235ac5 4aec781 10d9f51 8235ac5 02c83d1 10d9f51 4aec781 10d9f51 8235ac5 02c83d1 10d9f51 8235ac5 4aec781 10d9f51 8235ac5 02c83d1 4aec781 02c83d1 edcd422 02c83d1 edcd422 02c83d1 edcd422 02c83d1 69989c9 fe0e686 69989c9 2bb0966 69989c9 10d9f51 69989c9 10d9f51 69989c9 10d9f51 69989c9 10d9f51 69989c9 10d9f51 69989c9 10d9f51 7ad5b6c 69989c9 edcd422 02c83d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import streamlit as st
import pickle
import base64
import json
import numpy as np
import cv2
import pywt
import joblib
from PIL import Image
__class_name_to_number = {}
__class_number_to_name = {}
__model = None
st.header("Welcome to Indian Cricketers Classifier!")
col1,col2,col3 = st.columns(3)
with col1:
#dhoni = cv2.imread("dhoni.jpg")
dhoni = Image.open("dhoni.jpg")
st.image(dhoni,width=150, caption='MS Dhoni')
#ganguly = cv2.imread("ganguly.jpg")
ganguly = Image.open("ganguly.jpg")
st.image(ganguly,width=150, caption='Saurav Ganguly')
with col2:
#rahul = cv2.imread("rahul.jpg")
rahul = Image.open("rahul.jpg")
st.image(rahul,width=150, caption='Rahul Dravid')
#virat = cv2.imread("virat.jpg")
virat = Image.open("virat.jpg")
st.image(virat,width=150, caption='Virat Kohli')
with col3:
#sachin = cv2.imread("sachin.jpg")
sachin = Image.open("sachin.jpg")
st.image(sachin,width=150, caption='Sachin Tendulkar')
#sehwag = cv2.imread("sehwag.jpg")
sehwag = Image.open("sehwag.jpg")
st.image(sehwag,width=150, caption='Virendra Sehwag')
def classify_image(image_base64_data, file_path=None):
imgs = get_cropped_image_if_2_eyes_new(file_path, image_base64_data)
result = []
for img in imgs:
scalled_raw_img = cv2.resize(img, (32, 32))
img_har = w2d(img, 'db1', 5)
scalled_img_har = cv2.resize(img_har, (32, 32))
combined_img = np.vstack((scalled_raw_img.reshape(32 * 32 * 3, 1), scalled_img_har.reshape(32 * 32, 1)))
len_image_array = 32*32*3 + 32*32
final = combined_img.reshape(1,len_image_array).astype(float)
result.append({
'class': class_number_to_name(__model.predict(final)[0]),
'class_probability': np.around(__model.predict_proba(final)*100,2).tolist()[0],
'class_dictionary': __class_name_to_number
})
return result
def get_cropped_image_if_2_eyes_new(file_path, image_base64_data):
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
if file_path:
img = cv2.imread(file_path)
#st.image(img,width=150, caption='Uploaded Image')
else:
img = get_cv2_image_from_base64_string(image_base64_data)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
cropped_faces = []
for (x,y,w,h) in faces:
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
if len(eyes) >= 2:
cropped_faces.append(roi_color)
return cropped_faces
def w2d(img, mode='haar', level=1):
imArray = img
#Datatype conversions
#convert to grayscale
imArray = cv2.cvtColor( imArray,cv2.COLOR_RGB2GRAY )
#convert to float
imArray = np.float32(imArray)
imArray /= 255;
# compute coefficients
coeffs=pywt.wavedec2(imArray, mode, level=level)
#Process Coefficients
coeffs_H=list(coeffs)
coeffs_H[0] *= 0;
# reconstruction
imArray_H=pywt.waverec2(coeffs_H, mode);
imArray_H *= 255;
imArray_H = np.uint8(imArray_H)
return imArray_H
def get_cv2_image_from_base64_string(b64str):
'''
credit: https://stackoverflow.com/questions/33754935/read-a-base-64-encoded-image-from-memory-using-opencv-python-library
:param uri:
:return:
'''
encoded_data = b64str.split(',')[1]
nparr = np.frombuffer(base64.b64decode(encoded_data), np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
return img
def load_saved_artifacts():
#print("loading saved artifacts...start")
global __class_name_to_number
global __class_number_to_name
with open("class_cri_dictionary.json", "r") as f:
__class_name_to_number = json.load(f)
__class_number_to_name = {v:k for k,v in __class_name_to_number.items()}
global __model
if __model is None:
__model = joblib.load('cri_saved_model.pkl')
#st.text("loading saved artifacts...done")
return True
def class_number_to_name(class_num):
return __class_number_to_name[class_num]
def get_b64_test_image_for_virat():
with open("b64.txt") as f:
return f.read()
def save_uploaded_image(uploaded_image):
try:
with open(uploaded_image.name, 'wb') as f:
f.write(uploaded_image.getbuffer())
return {"complete":True, "filename":uploaded_image.name}
except:
return {"complete":False, "filename":""}
uploaded_image = st.file_uploader('Choose an image')
if uploaded_image is not None:
# save the image in a directory
image_dict = save_uploaded_image(uploaded_image)
if image_dict["complete"]:
display_image = image_dict["filename"]
st.header("Image Uploded!, Processing...")
if load_saved_artifacts():
img = cv2.imread(display_image)
img = cv2.resize(img, (130, 130))
result = classify_image(get_b64_test_image_for_virat(), display_image)
try:
col6,col7 = st.columns(2)
with col6:
st.header("Uploded Image: ")
dis_img = Image.open(display_image)
st.image(dis_img,width=130, caption='Uploaded Image')
with col7:
celeb = result[0]['class']
st.header("Predicted Image: ")
if celeb == "MS Dhoni":
#dhoni = cv2.imread("dhoni.jpg")
dhoni = Image.open("dhoni.jpg")
st.image(dhoni,width=150, caption='MS Dhoni')
elif celeb == "Rahul Dravid":
#dravid = cv2.imread("rahul.jpg")
dravid = Image.open("rahul.jpg")
st.image(dravid,width=150, caption='Rahul Dravid')
elif celeb == "Sachin Tendulkar":
#sachin = cv2.imread("sachin.jpg")
sachin = Image.open("sachin.jpg")
st.image(sachin,width=150, caption='Sachin Tendulkar')
elif celeb == "Saurav Ganguly":
#ganguly = cv2.imread("ganguly.jpg")
ganguly = Image.open("ganguly.jpg")
st.image(ganguly,width=150, caption='Saurav Ganguly')
elif celeb == "virat_kohli":
#virat = cv2.imread("virat.jpg")
virat = Image.open("virat.jpg")
st.image(virat,width=150, caption='Virat Kohli')
elif celeb == "Virendra Sehwag":
#sehwag = cv2.imread("sehwag.jpg")
sehwag = Image.open("sehwag.jpg")
st.image(sehwag,width=150, caption='Virendra Sehwag')
except:
st.header("Image Cannot be Classified!")
|