File size: 5,995 Bytes
581df5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602da86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Web Content Q&A Tool for Hugging Face Spaces
# Optimized for memory constraints (2GB RAM) and 24-hour timeline
# Features: Ingest up to 3 URLs, ask questions, get concise answers using DistilBERT

import gradio as gr
from bs4 import BeautifulSoup
import requests
from sentence_transformers import SentenceTransformer, util
import numpy as np
from transformers import pipeline

# Global variables for in-memory storage (reset on app restart)
corpus = []  # List of paragraphs from URLs
embeddings = None  # Precomputed embeddings for retrieval
sources_list = []  # Source URLs for each paragraph

# Load models at startup (memory: ~340MB total)
# Retrieval model: all-MiniLM-L6-v2 (~80MB, 384-dim embeddings)
retriever = SentenceTransformer('all-MiniLM-L6-v2')
# QA model: DistilBERT fine-tuned on SQuAD (~260MB)
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")

def ingest_urls(urls):
    """
    Ingest up to 3 URLs, scrape content, and compute embeddings.
    Limits: 100 paragraphs per URL to manage memory (~0.5MB embeddings total).
    """
    global corpus, embeddings, sources_list
    # Clear previous data
    corpus.clear()
    sources_list.clear()
    embeddings = None
    
    # Parse URLs from input (one per line, max 3)
    url_list = [url.strip() for url in urls.split("\n") if url.strip()][:3]
    if not url_list:
        return "Error: Please enter at least one valid URL."
    
    # Headers to mimic browser and avoid blocking
    headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"}
    
    # Scrape each URL
    for url in url_list:
        try:
            response = requests.get(url, headers=headers, timeout=5)
            response.raise_for_status()  # Raise exception for bad status codes
            soup = BeautifulSoup(response.text, 'html.parser')
            # Extract content from <p> and <div> tags for broader coverage
            elements = soup.find_all(['p', 'div'])
            paragraph_count = 0
            for elem in elements:
                text = elem.get_text().strip()
                # Filter short or empty text
                if text and len(text) > 20 and paragraph_count < 100:
                    corpus.append(text)
                    sources_list.append(url)
                    paragraph_count += 1
            if paragraph_count == 0:
                return f"Warning: No usable content found at {url}."
        except Exception as e:
            return f"Error ingesting {url}: {str(e)}. Check URL and try again."
    
    # Compute embeddings if content was ingested
    if corpus:
        # Embeddings: ~1.5KB per paragraph, ~450KB for 300 paragraphs
        embeddings = retriever.encode(corpus, convert_to_tensor=True, show_progress_bar=False)
        return f"Success: Ingested {len(corpus)} paragraphs from {len(set(url_list))} URLs."
    return "Error: No valid content ingested."

def answer_question(question):
    """
    Answer a question using retrieved context and DistilBERT QA.
    Retrieves top 3 paragraphs to provide broader context for cross-questioning.
    If total context exceeds 512 tokens (DistilBERT's max length), it will be truncated automatically.
    """
    global corpus, embeddings, sources_list
    if not corpus or embeddings is None:
        return "Error: Please ingest URLs first."
    
    # Encode question into embedding
    question_embedding = retriever.encode(question, convert_to_tensor=True)
    
    # Compute cosine similarity with stored embeddings
    cos_scores = util.cos_sim(question_embedding, embeddings)[0]
    top_k = min(3, len(corpus))  # Get top 3 or less if fewer paragraphs
    top_indices = np.argsort(-cos_scores)[:top_k]
    
    # Retrieve context (top 3 paragraphs)
    contexts = [corpus[i] for i in top_indices]
    context = " ".join(contexts)  # Concatenate with space
    sources = [sources_list[i] for i in top_indices]
    
    # Extract answer with DistilBERT
    # Note: If total tokens exceed 512, it will be truncated automatically
    result = qa_model(question=question, context=context)
    answer = result['answer']
    confidence = result['score']
    
    # Format response with answer, confidence, and sources
    sources_str = "\n".join(set(sources))  # Unique sources
    return f"Answer: {answer}\nConfidence: {confidence:.2f}\nSources:\n{sources_str}"

def clear_all():
    """Clear all inputs and outputs for a fresh start."""
    global corpus, embeddings, sources_list
    corpus.clear()
    embeddings = None
    sources_list.clear()
    return "", "", ""

# Gradio UI with minimal, user-friendly design
with gr.Blocks(title="Web Content Q&A Tool") as demo:
    gr.Markdown(
        """
        # Web Content Q&A Tool
        Enter up to 3 URLs (one per line), ingest their content, and ask questions.
        Answers are generated using only the ingested data. Note: Data resets on app restart.
        """
    )
    
    # URL input and ingestion
    with gr.Row():
        url_input = gr.Textbox(label="Enter URLs (one per line, max 3)", lines=3, placeholder="https://example.com")
        with gr.Column():
            ingest_btn = gr.Button("Ingest URLs")
            clear_btn = gr.Button("Clear All")
    ingest_output = gr.Textbox(label="Ingestion Status", interactive=False)
    
    # Question input and answer
    with gr.Row():
        question_input = gr.Textbox(label="Ask a question", placeholder="What is this about?")
        ask_btn = gr.Button("Ask")
    answer_output = gr.Textbox(label="Answer", lines=5, interactive=False)
    
    # Bind functions to buttons
    ingest_btn.click(fn=ingest_urls, inputs=url_input, outputs=ingest_output)
    ask_btn.click(fn=answer_question, inputs=question_input, outputs=answer_output)
    clear_btn.click(fn=clear_all, inputs=None, outputs=[url_input, ingest_output, answer_output])

# Launch the app (HF Spaces expects port 7860)
demo.launch(share = True, server_name="0.0.0.0", server_port=7860)