Spaces:
Paused
Paused
File size: 2,962 Bytes
5090140 28ed44f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import os
import json
import gradio as gr
from tempfile import NamedTemporaryFile
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
def load_and_split_document(file):
"""Loads and splits the document into pages."""
loader = PyPDFLoader(file.name)
data = loader.load_and_split()
return data
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def create_database(data, embeddings):
db = FAISS.from_documents(data, embeddings)
db.save_local("faiss_database")
prompt = """
Answer the question based only on the following context:
{context}
Question: {question}
"""
def get_model():
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={"temperature": 0.5, "max_length": 512},
huggingfacehub_api_token=huggingface_token
)
def response(database, model, question):
prompt_val = ChatPromptTemplate.from_template(prompt)
retriever = database.as_retriever()
parser = StrOutputParser()
chain = (
{'context': retriever, 'question': RunnablePassthrough()}
| prompt_val
| model
| parser
)
ans = chain.invoke(question)
return ans
def update_vectors(file):
if file is None:
return "Please upload a PDF file."
data = load_and_split_document(file)
embed = get_embeddings()
create_database(data, embed)
return "Vector store updated successfully."
def ask_question(question):
if not question:
return "Please enter a question."
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
model = get_model()
return response(database, model, question)
with gr.Blocks() as demo:
gr.Markdown("# Chat with your PDF documents")
with gr.Row():
file_input = gr.File(label="Upload your PDF document", file_types=[".pdf"])
update_button = gr.Button("Update Vector Store")
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
with gr.Row():
question_input = gr.Textbox(label="Ask a question about your documents")
submit_button = gr.Button("Submit")
answer_output = gr.Textbox(label="Answer")
submit_button.click(ask_question, inputs=[question_input], outputs=answer_output)
if __name__ == "__main__":
demo.launch() |