File size: 46,885 Bytes
33f1e50 72ddedb 33f1e50 d07bea9 9988100 33f1e50 72ddedb 33f1e50 218de65 90e8b4f 6773bde a5594d9 b688d25 e181e71 1a8ea50 567f2c0 27f1192 ec64596 6e7871f 8962e02 fdbfb41 bc6c726 e181e71 8962e02 72ddedb 33f1e50 8962e02 a2c11b9 8962e02 a2c11b9 8962e02 a2c11b9 8962e02 b578a48 8962e02 33f1e50 6773bde 33f1e50 d0bc86a 33f1e50 1a8ea50 1e878de 1a8ea50 567f2c0 bc6c726 72ddedb 8962e02 a2c11b9 8962e02 a2c11b9 8962e02 a2c11b9 8962e02 a2c11b9 8962e02 a2c11b9 8962e02 a2c11b9 8962e02 1a40e01 ec64596 6759c67 1a40e01 ec64596 6759c67 1a40e01 6759c67 1a40e01 6759c67 ec64596 1a40e01 ec64596 1a40e01 ec64596 8962e02 ec64596 8962e02 ec64596 1a40e01 ec64596 8962e02 ec64596 8962e02 ec64596 33f1e50 c17888a 33f1e50 72ddedb 33f1e50 a5594d9 b577b65 a5594d9 b577b65 a5594d9 b577b65 a5594d9 b577b65 6773bde a5594d9 6773bde 6c48447 a5594d9 6c48447 f57b788 6c48447 6773bde a2c11b9 6e7871f c476da1 a0f74b4 6e7871f 8962e02 6e7871f a0f74b4 c476da1 6e7871f 8962e02 6e7871f 8962e02 6e7871f 8962e02 c476da1 6e7871f 33f1e50 6e7871f 33f1e50 6e7871f 33f1e50 a2c11b9 6e7871f 33f1e50 6e7871f 33f1e50 a2c11b9 33f1e50 a2c11b9 33f1e50 72ddedb 6e7871f a2c11b9 6e7871f a2c11b9 6e7871f 41afb33 33f1e50 6e7871f 41afb33 6e7871f a2c11b9 41afb33 a2c11b9 6e7871f a2c11b9 41afb33 6e7871f 41afb33 6e7871f 41afb33 bc6c726 a2c11b9 bc6c726 41afb33 33f1e50 41afb33 a2c11b9 33f1e50 41afb33 33f1e50 41afb33 a2c11b9 33f1e50 41afb33 7646c7a 33f1e50 41afb33 bc6c726 41afb33 bc6c726 41afb33 6e7871f 33f1e50 41afb33 33f1e50 bc6c726 33f1e50 a2c11b9 7646c7a 33f1e50 c51303e 33f1e50 e181e71 33f1e50 e181e71 33f1e50 c51303e 7646c7a e181e71 8962e02 7646c7a 33f1e50 c51303e 7646c7a 33f1e50 7646c7a c51303e a2c11b9 b578a48 a2c11b9 b578a48 a2c11b9 b578a48 a2c11b9 b578a48 a2c11b9 7646c7a a2c11b9 7646c7a a2c11b9 33f1e50 a2c11b9 7646c7a 1aa2150 eaf3dee 33f1e50 a5594d9 eaf3dee c6a0be6 9b298f8 c6a0be6 b577b65 a5594d9 33f1e50 1a8ea50 8962e02 33f1e50 e4b2310 10f2ed2 33f1e50 1a8ea50 ead0fa7 a0f74b4 1a8ea50 128980b 1a8ea50 567f2c0 d0bc86a 567f2c0 00a13ce 567f2c0 a2c11b9 567f2c0 1a8ea50 33f1e50 8962e02 b864c9d 33f1e50 a2c11b9 33f1e50 41afb33 1e878de b864c9d 1e878de 41afb33 1e878de 41afb33 1e878de 41afb33 1e878de 33f1e50 4706059 41afb33 1e878de 41afb33 1e878de 41afb33 1e878de 33f1e50 1e878de 41afb33 1e878de 33f1e50 2b68ba8 07efc76 41afb33 1e878de 07efc76 41afb33 07efc76 41afb33 07efc76 a5594d9 41afb33 eaf3dee 41afb33 eaf3dee 07efc76 6773bde 9988100 07efc76 a5594d9 41afb33 07efc76 41afb33 07efc76 4706059 1e878de 33f1e50 41afb33 c51303e 41afb33 c51303e a2c11b9 c51303e 41afb33 c51303e 41afb33 c51303e 41afb33 c51303e 41afb33 c51303e 33f1e50 41afb33 33f1e50 41afb33 33f1e50 41afb33 33f1e50 41afb33 e4b2310 41afb33 e4b2310 1a8ea50 41afb33 1a8ea50 33f1e50 218de65 33f1e50 8962e02 7646c7a 8962e02 d8f14ff 33f1e50 8962e02 ec64596 8962e02 ec64596 d8f14ff ec64596 8962e02 ec64596 9b298f8 d8f14ff 8962e02 d8f14ff 41afb33 8962e02 d8f14ff 85df365 8962e02 d8f14ff 33f1e50 3a81b27 33f1e50 d8f14ff 41afb33 d8f14ff 8962e02 85df365 d8f14ff 05d20f1 d8f14ff 05d20f1 d8f14ff 8962e02 a6903fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 |
import requests
import gradio as gr
import logging
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from requests.exceptions import Timeout
from urllib.request import urlopen, Request
import json
from huggingface_hub import InferenceClient
import random
import time
from sentence_transformers import SentenceTransformer, util
import torch
from datetime import datetime
import os
from dotenv import load_dotenv
import certifi
import requests
from newspaper import Article
import PyPDF2
import io
import requests
import random
import datetime
from groq import Groq
import os
from mistralai import Mistral
from dotenv import load_dotenv
import re
from typing import List, Tuple
from rank_bm25 import BM25Okapi
from typing import List, Dict
import numpy as np
from math import log
from collections import Counter
import numpy as np
from typing import List, Dict, Tuple
import datetime
from abc import ABC, abstractmethod
from typing import List, Dict, Any
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
# Automatically get the current year
CURRENT_YEAR = datetime.datetime.now().year
# Load environment variables from a .env file
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# SearXNG instance details
SEARXNG_URL = os.getenv("SEARXNG_URL")
SEARXNG_KEY = os.getenv("SEARXNG_KEY")
logger.info(f"SearXNG URL: {SEARXNG_URL}")
logger.info(f"SearXNG Key: {SEARXNG_KEY}")
# ... other environment variables ...
CUSTOM_LLM = os.getenv("CUSTOM_LLM")
CUSTOM_LLM_DEFAULT_MODEL = os.getenv("CUSTOM_LLM_DEFAULT_MODEL")
logger.info(f"CUSTOM_LLM: {CUSTOM_LLM}")
logger.info(f"CUSTOM_LLM_DEFAULT_MODEL: {CUSTOM_LLM_DEFAULT_MODEL}")
# Define the fetch_custom_models function here
def fetch_custom_models():
if not CUSTOM_LLM:
return []
try:
response = requests.get(f"{CUSTOM_LLM}/api/tags") # Ollama endpoint for listing models
response.raise_for_status()
models = response.json().get("models", [])
return [model["name"] for model in models] # Ollama returns model names directly
except Exception as e:
logger.error(f"Error fetching Ollama models: {e}")
return []
# Fetch custom models and determine the default model
custom_models = fetch_custom_models()
all_models = ["huggingface", "groq", "mistral"] + custom_models
# Determine the default model
default_model = CUSTOM_LLM_DEFAULT_MODEL if CUSTOM_LLM_DEFAULT_MODEL in all_models else "groq"
logger.info(f"Default model selected: {default_model}")
# Use the environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
client = InferenceClient(
"mistralai/Mistral-Small-Instruct-2409",
token=HF_TOKEN,
)
# Default API key for examples (replace with a dummy value or leave empty)
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
groq_client = Groq(api_key=GROQ_API_KEY)
# Initialize Mistral client
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
mistral_client = Mistral(api_key=MISTRAL_API_KEY)
similarity_model = HuggingFaceInferenceAPIEmbeddings(
api_key=HF_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
)
# Step 1: Create a base class for AI models
class AIModel(ABC):
@abstractmethod
def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
pass
# Step 2: Implement specific classes for each AI model
class HuggingFaceModel(AIModel):
def __init__(self, client):
self.client = client
def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
response = self.client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return response.choices[0].message.content.strip()
class GroqModel(AIModel):
def __init__(self, client):
self.client = client
def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
response = self.client.chat.completions.create(
messages=messages,
model="llama-3.1-70b-versatile",
max_tokens=max_tokens,
temperature=temperature
)
return response.choices[0].message.content.strip()
class MistralModel(AIModel):
def __init__(self, client):
self.client = client
def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
response = self.client.chat.complete(
model="open-mistral-nemo",
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return response.choices[0].message.content.strip()
# Step 3: Use a factory pattern to create model instances
class CustomModel(AIModel):
def __init__(self, model_name):
self.model_name = model_name
self.base_url = os.getenv("CUSTOM_LLM", "http://localhost:11434")
def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
try:
# Convert messages to Ollama format
prompt = "\n".join([
f"{msg['role'].capitalize()}: {msg['content']}"
for msg in messages
])
response = requests.post(
f"{self.base_url}/api/generate", # Ollama endpoint
json={
"model": self.model_name,
"prompt": prompt,
"options": {
"num_predict": max_tokens,
"temperature": temperature
}
}
)
response.raise_for_status()
# Handle Ollama's streaming response
full_response = ""
for line in response.iter_lines():
if line:
chunk = json.loads(line)
if 'response' in chunk:
full_response += chunk['response']
if chunk.get('done', False):
break
return full_response.strip()
except Exception as e:
logger.error(f"Error generating response from Ollama model: {e}")
return f"Error: Unable to generate response from Ollama model. {str(e)}"
class AIModelFactory:
@staticmethod
def create_model(model_name: str, client: Any = None) -> AIModel:
if model_name == "huggingface":
return HuggingFaceModel(client)
elif model_name == "groq":
return GroqModel(client)
elif model_name == "mistral":
return MistralModel(client)
elif CUSTOM_LLM and model_name in fetch_custom_models():
return CustomModel(model_name)
else:
raise ValueError(f"Unsupported model: {model_name}")
def determine_query_type(query: str, chat_history: str, ai_model: AIModel) -> str:
system_prompt = """You are Sentinel, an intelligent AI agent tasked with determining whether a user query requires a web search or can be answered using your existing knowledge base. Your knowledge cutoff date is 2023, and the current year is 2024. Your task is to analyze the query and decide on the appropriate action.
Instructions for Sentinel:
1. If the query is a general conversation starter, greeting, or can be answered with information from 2023 or earlier, classify it as "knowledge_base".
2. If the query requires information from 2024, up-to-date news, current events, or real-time data, classify it as "web_search".
3. For queries about ongoing events, trends, or situations that likely have significant updates in 2024, classify as "web_search".
4. Consider the chat history when making your decision.
5. Respond with ONLY "knowledge_base" or "web_search".
Instructions for users (include this in your first interaction):
"Hello! I'm Sentinel, your AI assistant. I can help you with various tasks and answer your questions. Here's how to get the best results:
- My knowledge base is current up to 2023. For information up to that year, I can answer directly.
- For any information, events, or data from 2024 onwards, I'll need to search the web for the most up-to-date results.
- If you're asking about ongoing situations or need the very latest information, please mention that you need current data.
- Feel free to ask follow-up questions or request clarification on any topic.
- If you're unsure whether I need to search, you can ask 'Do you need to search the web for this?'
How can I assist you today?"
Examples:
- "Hi, how are you?" -> "knowledge_base"
- "What were the major events of 2023?" -> "knowledge_base"
- "What's the latest news in the US?" -> "web_search"
- "Can you explain quantum computing?" -> "knowledge_base"
- "What are the current stock prices for Apple?" -> "web_search"
- "Who won the 2024 Super Bowl?" -> "web_search"
- "What were the key findings of the 2022 climate report?" -> "knowledge_base"
"""
user_prompt = f"""
Chat history:
{chat_history}
Current query: {query}
Determine if this query requires a web search or can be answered from the knowledge base.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
response = ai_model.generate_response(
messages=messages,
max_tokens=10,
temperature=0.2
)
decision = response.strip().lower()
return "web_search" if decision == "web_search" else "knowledge_base"
except Exception as e:
logger.error(f"Error determining query type: {e}")
return "web_search" # Default to web search if there's an error
def generate_ai_response(query: str, chat_history: str, ai_model: AIModel, temperature: float) -> str:
system_prompt = """You are a helpful AI assistant. Provide a concise and informative response to the user's query based on your existing knowledge. Do not make up information or claim to have real-time data."""
user_prompt = f"""
Chat history:
{chat_history}
Current query: {query}
Please provide a response to the query.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
response = ai_model.generate_response(
messages=messages,
max_tokens=500,
temperature=temperature
)
return response
except Exception as e:
logger.error(f"Error generating AI response: {e}")
return "I apologize, but I'm having trouble generating a response at the moment. Please try again later."
# Set up a session with retry mechanism
def requests_retry_session(
retries=0,
backoff_factor=0.1,
status_forcelist=(500, 502, 504),
session=None,
):
session = session or requests.Session()
retry = Retry(
total=retries,
read=retries,
connect=retries,
backoff_factor=backoff_factor,
status_forcelist=status_forcelist,
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
return session
def is_valid_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
def scrape_pdf_content(url, max_chars=3000, timeout=5):
try:
logger.info(f"Scraping PDF content from: {url}")
# Download the PDF file
response = requests.get(url, timeout=timeout)
response.raise_for_status()
# Create a PDF reader object
pdf_reader = PyPDF2.PdfReader(io.BytesIO(response.content))
# Extract text from all pages
content = ""
for page in pdf_reader.pages:
content += page.extract_text() + "\n"
# Limit the content to max_chars
return content[:max_chars] if content else ""
except requests.Timeout:
logger.error(f"Timeout error while scraping PDF content from {url}")
return ""
except Exception as e:
logger.error(f"Error scraping PDF content from {url}: {e}")
return ""
def scrape_with_newspaper(url):
if url.lower().endswith('.pdf'):
return scrape_pdf_content(url)
logger.info(f"Starting to scrape with Newspaper3k: {url}")
try:
article = Article(url)
article.download()
article.parse()
# Combine title and text
content = f"Title: {article.title}\n\n"
content += article.text
# Add publish date if available
if article.publish_date:
content += f"\n\nPublish Date: {article.publish_date}"
# Add authors if available
if article.authors:
content += f"\n\nAuthors: {', '.join(article.authors)}"
# Add top image URL if available
if article.top_image:
content += f"\n\nTop Image URL: {article.top_image}"
return content
except Exception as e:
logger.error(f"Error scraping {url} with Newspaper3k: {e}")
return ""
def rephrase_query(chat_history, query, model, temperature=0.2) -> str:
system_prompt = """You are a highly intelligent and context-aware conversational assistant. Your tasks are as follows:
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
2. For both continuations and new topics:
a. **Entity Identification and Quotation**:
- Analyze the user's query to identify the main entities (e.g., organizations, brands, products, locations).
- For each identified entity, enclose ONLY the entity itself in double quotes within the query.
- If no identifiable entities are found, proceed without adding quotes.
b. **Query Preservation**:
- Maintain the entire original query, including any parts after commas or other punctuation.
- Do not remove or truncate any part of the original query.
3. If it's a continuation:
- Incorporate relevant information from the context to make the query more specific and contextual.
- Ensure that entities from the previous context are properly quoted if they appear in the rephrased query.
4. For both continuations and new topics:
- First, check if the query contains words indicating current information (e.g., "today", "now", "current", "latest"):
- If present, do NOT add any date operators to the query
- Otherwise, if the query mentions a specific time period (e.g., a quarter, year, or date range):
- Add appropriate "after: " operators to the end of the rephrased query.
- Use the format "after: YYYY" for date ranges.
- If no specific time period is mentioned and no current-time indicators are present:
- Append "after: {CURRENT_YEAR}" to the end of the rephrased query.
- Do not use quotes or the "+" operator when adding dates.
5. **Output**:
- Return ONLY the rephrased query, ensuring it is concise, clear, and contextually accurate.
- Do not include any additional commentary or explanation.
### Example Scenarios
**Scenario 1: Query About Current Information**
- **User Query**: "What's the stock price of Apple today?"
- **Rephrased Query**: "What's the stock price of \"Apple\" today"
**Scenario 2: New Topic with Specific Quarter**
- **User Query**: "How did Bank of America perform during Q2 2024?"
- **Rephrased Query**: "How did \"Bank of America\" perform during Q2 2024 after: 2024"
**Scenario 3: Continuation with Date Range**
- **Previous Query**: "What were Apple's sales figures for 2023?"
- **User Query**: "How about for the first half of 2024?"
- **Rephrased Query**: "How about \"Apple\"'s sales figures for the first half of 2024 after: 2024"
**Scenario 4: Current Status Query**
- **User Query**: "What is the current market share of Toyota and Honda in the US?"
- **Rephrased Query**: "What is the current market share of \"Toyota\" and \"Honda\" in the \"US\""
**Scenario 5: Current Status Query**
- **User Query**: "Bank of America Q2 2024 earnings?"
- **Rephrased Query**: "\"Bank of America\" Q2 2024 earnings after: 2024""
"""
# Create the user prompt with the chat history and current query
user_prompt = f"""Conversation context: {chat_history}
New query: {query}
Current year: {CURRENT_YEAR}
Rephrased query:"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
logger.info(f"Sending rephrasing request to {model} with temperature {temperature}")
if model == "groq":
response = groq_client.chat.completions.create(
messages=messages,
model="llama-3.1-70b-versatile",
max_tokens=150,
temperature=temperature,
top_p=0.9,
presence_penalty=1.2,
stream=False
)
rephrased_question = response.choices[0].message.content.strip()
elif model == "mistral":
response = mistral_client.chat.complete(
model="open-mistral-nemo",
messages=messages,
max_tokens=150,
temperature=temperature,
top_p=0.9,
stream=False
)
rephrased_question = response.choices[0].message.content.strip()
elif CUSTOM_LLM and model in fetch_custom_models():
# Create CustomModel instance for Ollama
custom_model = CustomModel(model)
rephrased_question = custom_model.generate_response(
messages=messages,
max_tokens=150,
temperature=temperature
)
else: # huggingface
response = client.chat_completion(
messages=messages,
max_tokens=150,
temperature=temperature,
frequency_penalty=1.4,
top_p=0.9
)
rephrased_question = response.choices[0].message.content.strip()
# Remove surrounding quotes if present
if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \
(rephrased_question.startswith("'") and rephrased_question.endswith("'")):
rephrased_question = rephrased_question[1:-1].strip()
logger.info(f"Rephrased Query (cleaned): {rephrased_question}")
return rephrased_question
except Exception as e:
logger.error(f"Error rephrasing query with {model} LLM: {e}")
return query # Fallback to original query if rephrasing fails
class BM25:
def __init__(self, k1: float = 1.5, b: float = 0.75):
self.k1 = k1 # term frequency saturation parameter
self.b = b # length normalization parameter
self.corpus_size = 0
self.doc_lengths = []
self.avgdl = 0
self.doc_freqs = []
self.idf = {}
self.doc_vectors = []
def fit(self, corpus: List[str]):
"""
Fit BM25 parameters to the corpus
Args:
corpus: List of document strings
"""
self.corpus_size = len(corpus)
# Calculate document lengths and average document length
self.doc_lengths = []
for doc in corpus:
words = doc.lower().split()
self.doc_lengths.append(len(words))
self.avgdl = sum(self.doc_lengths) / self.corpus_size
# Calculate document frequencies
df = Counter()
self.doc_vectors = []
for doc in corpus:
words = doc.lower().split()
doc_words = set(words)
for word in doc_words:
df[word] += 1
self.doc_vectors.append(Counter(words))
# Calculate inverse document frequency
self.idf = {}
for word, freq in df.items():
self.idf[word] = log((self.corpus_size - freq + 0.5) / (freq + 0.5))
def get_scores(self, query: str) -> np.ndarray:
"""
Calculate BM25 scores for the query against all documents
Args:
query: Query string
Returns:
numpy array of scores for each document
"""
scores = np.zeros(self.corpus_size)
query_words = query.lower().split()
for word in query_words:
if word not in self.idf:
continue
qi = self.idf[word]
for idx, doc_vector in enumerate(self.doc_vectors):
if word not in doc_vector:
continue
score = (qi * doc_vector[word] * (self.k1 + 1) /
(doc_vector[word] + self.k1 * (1 - self.b + self.b *
self.doc_lengths[idx] / self.avgdl)))
scores[idx] += score
return scores
def prepare_documents_for_bm25(documents: List[Dict]) -> Tuple[List[str], List[Dict]]:
"""
Prepare documents for BM25 ranking by combining title and content
Args:
documents: List of document dictionaries
Returns:
Tuple of (document texts, original documents)
"""
doc_texts = []
valid_documents = []
for doc in documents:
try:
# Get title and content with default empty strings if missing
title = doc.get('title', '')
content = doc.get('content', '')
# Skip documents with no content and title
if not (title.strip() or content.strip()):
logger.warning(f"Skipping document with no title or content: {doc}")
continue
# Combine title and content for better matching
doc_text = f"{title} {content}".strip()
doc_texts.append(doc_text)
valid_documents.append(doc)
except Exception as e:
logger.warning(f"Error processing document {doc}: {e}")
continue
if not valid_documents:
raise ValueError("No valid documents found with required fields")
return doc_texts, valid_documents
def rerank_documents(query: str, documents: List[Dict],
similarity_threshold: float = 0.95, max_results: int = 5) -> List[Dict]:
try:
if not documents:
logger.warning("No documents to rerank.")
return documents
# Validate input documents
if not all(isinstance(doc, dict) for doc in documents):
raise ValueError("All documents must be dictionaries")
# Step 1: Prepare documents for BM25
doc_texts, valid_docs = prepare_documents_for_bm25(documents)
if not valid_docs:
logger.warning("No valid documents after preparation.")
return documents[:max_results]
# Verify all documents have summaries for semantic scoring
valid_docs = [doc for doc in valid_docs if 'summary' in doc and doc['summary'].strip()]
if not valid_docs:
logger.warning("No documents with valid summaries found.")
return documents[:max_results]
# Step 2: Initialize and fit BM25
bm25 = BM25()
bm25.fit(doc_texts)
# Step 3: Get BM25 scores
bm25_scores = bm25.get_scores(query)
# Step 4: Get semantic similarity scores
query_embedding = similarity_model.embed_query(query)
doc_summaries = [doc['summary'] for doc in valid_docs]
doc_embeddings = similarity_model.embed_query(doc_summaries)
semantic_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
# Step 5: Combine scores (normalize first)
if len(bm25_scores) > 1:
bm25_scores_norm = (bm25_scores - np.min(bm25_scores)) / (np.max(bm25_scores) - np.min(bm25_scores))
else:
bm25_scores_norm = bm25_scores
if len(semantic_scores) > 1:
semantic_scores_norm = (semantic_scores - torch.min(semantic_scores)) / (torch.max(semantic_scores) - torch.min(semantic_scores))
else:
semantic_scores_norm = semantic_scores
# Combine scores with weights (0.4 for BM25, 0.6 for semantic similarity)
combined_scores = 0.4 * bm25_scores_norm + 0.6 * semantic_scores_norm.numpy()
# Create scored documents with combined scores
scored_documents = list(zip(valid_docs, combined_scores))
# Sort by combined score (descending)
scored_documents.sort(key=lambda x: x[1], reverse=True)
# Filter similar documents
filtered_docs = []
added_contents = []
for doc, score in scored_documents:
if score < 0.3: # Minimum relevance threshold
continue
# Check similarity with already selected documents
doc_embedding = similarity_model.embed_query(doc['summary'])
is_similar = False
for content in added_contents:
content_embedding = similarity_model.embed_query(content)
similarity = util.pytorch_cos_sim(doc_embedding, content_embedding)
if similarity > similarity_threshold:
is_similar = True
break
if not is_similar:
filtered_docs.append(doc)
added_contents.append(doc['summary'])
if len(filtered_docs) >= max_results:
break
logger.info(f"Reranked and filtered to {len(filtered_docs)} unique documents using BM25 and semantic similarity.")
return filtered_docs
except Exception as e:
logger.error(f"Error during reranking documents: {e}")
return documents[:max_results] # Fallback to first max_results documents if reranking fails
def compute_similarity(text1, text2):
# Encode the texts
embedding1 = similarity_model.embed_query(text1)
embedding2 = similarity_model.embed_query(text2)
# Compute cosine similarity
cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2)
return cosine_similarity.item()
def is_content_unique(new_content, existing_contents, similarity_threshold=0.8):
for existing_content in existing_contents:
similarity = compute_similarity(new_content, existing_content)
if similarity > similarity_threshold:
return False
return True
def assess_relevance_and_summarize(llm_client, query, document, model, temperature=0.2) -> str:
system_prompt = """You are a world-class AI assistant specializing in news analysis and document summarization. Your task is to provide a comprehensive and detailed summary of the given document that captures its key points and relevance to the user's query."""
user_prompt = f"""
Query: {query}
Document Title: {document['title']}
Document Content:
{document['content'][:1000]} # Limit to first 1000 characters for efficiency
Instructions:
1. Provide a detailed summary that captures the unique aspects of this document. Include:
- Key facts and figures
- Dates of events or announcements
- Names of important entities mentioned
- Any metrics or changes reported
- The potential impact or significance of the content
2. Focus on aspects that are most relevant to the user's query
3. Ensure the summary is distinctive and highlights what makes this particular document unique
4. Include any specific context that helps understand the document's significance
Your response should be in the following format:
Summary: [Your detailed summary]
Remember to:
- Highlight the most important information first
- Include specific numbers, dates, and facts when available
- Connect the information to the user's query where relevant
- Focus on what makes this document unique or noteworthy
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
if model == "groq":
response = groq_client.chat.completions.create(
messages=messages,
model="llama-3.1-70b-versatile",
max_tokens=300,
temperature=temperature,
top_p=0.9,
presence_penalty=1.2,
stream=False
)
summary = response.choices[0].message.content.strip()
elif model == "mistral":
response = mistral_client.chat.complete(
model="open-mistral-nemo",
messages=messages,
max_tokens=300,
temperature=temperature,
top_p=0.9,
stream=False
)
summary = response.choices[0].message.content.strip()
elif CUSTOM_LLM and model in fetch_custom_models():
# Create CustomModel instance for Ollama
custom_model = CustomModel(model)
summary = custom_model.generate_response(
messages=messages,
max_tokens=300,
temperature=temperature
)
else: # huggingface
response = client.chat_completion(
messages=messages,
max_tokens=300,
temperature=temperature,
frequency_penalty=1.4,
top_p=0.9
)
summary = response.choices[0].message.content.strip()
# Clean up the summary if needed
if summary.startswith("Summary: "):
summary = summary[9:].strip()
return f"Relevant: Yes\nSummary: {summary}"
except Exception as e:
error_msg = f"Error summarizing with {model} LLM: {str(e)}"
logger.error(error_msg)
return f"Relevant: Yes\nSummary: Error occurred while summarizing the document: {str(e)}"
def scrape_full_content(url, max_chars=3000, timeout=5, use_pydf2=True):
try:
logger.info(f"Scraping full content from: {url}")
# Check if the URL ends with .pdf
if url.lower().endswith('.pdf'):
if use_pydf2:
return scrape_pdf_content(url, max_chars, timeout)
else:
logger.info(f"Skipping PDF document: {url}")
return None
# Use Newspaper3k for non-PDF content
content = scrape_with_newspaper(url)
# Limit the content to max_chars
return content[:max_chars] if content else ""
except requests.Timeout:
logger.error(f"Timeout error while scraping full content from {url}")
return ""
except Exception as e:
logger.error(f"Error scraping full content from {url}: {e}")
return ""
def llm_summarize(json_input, model, temperature=0.2):
system_prompt = """You are Sentinel, a world-class AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them."""
user_prompt = f"""
Please provide a comprehensive summary based on the following JSON input:
{json_input}
Instructions:
1. Analyze the query and the provided documents.
2. Write a detailed, long, and complete research document that is informative and relevant to the user's query based on provided context (the context consists of search results containing a brief description of the content of that page).
3. You must use this context to answer the user's query in the best way possible. Use an unbiased and journalistic tone in your response. Do not repeat the text.
4. Use an unbiased and professional tone in your response.
5. Do not repeat text verbatim from the input.
6. Provide the answer in the response itself.
7. You can use markdown to format your response.
8. Use bullet points to list information where appropriate.
9. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation.
10. Place these citations at the end of the relevant sentences.
11. You can cite the same sentence multiple times if it's relevant to different parts of your answer.
12. Make sure the answer is not short and is informative.
13. Your response should be detailed, informative, accurate, and directly relevant to the user's query."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
if model == "groq":
response = groq_client.chat.completions.create(
messages=messages,
model="llama-3.1-70b-versatile",
max_tokens=5500,
temperature=temperature,
top_p=0.9,
presence_penalty=1.2,
stream=False
)
return response.choices[0].message.content.strip()
elif model == "mistral":
response = mistral_client.chat.complete(
model="open-mistral-nemo",
messages=messages,
max_tokens=10000,
temperature=temperature,
top_p=0.9,
stream=False
)
return response.choices[0].message.content.strip()
elif CUSTOM_LLM and model in fetch_custom_models():
# Create CustomModel instance for Ollama
custom_model = CustomModel(model)
response = custom_model.generate_response(
messages=messages,
max_tokens=5000,
temperature=temperature
)
return response
else: # huggingface
response = client.chat_completion(
messages=messages,
max_tokens=10000,
temperature=temperature,
frequency_penalty=1.4,
top_p=0.9
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error in LLM summarization: {e}")
return "Error: Unable to generate a summary. Please try again."
def search_and_scrape(
query: str,
chat_history: str,
ai_model: AIModel,
num_results: int = 10,
max_chars: int = 1500,
time_range: str = "",
language: str = "en",
category: str = "general",
engines: List[str] = [],
safesearch: int = 2,
method: str = "GET",
llm_temperature: float = 0.2,
timeout: int = 5,
model: str = "huggingface",
use_pydf2: bool = True
):
try:
# Step 1: Rephrase the Query
rephrased_query = rephrase_query(chat_history, query, model, temperature=llm_temperature)
logger.info(f"Rephrased Query: {rephrased_query}")
if not rephrased_query or rephrased_query.lower() == "not_needed":
logger.info("No need to perform search based on the rephrased query.")
return "No search needed for the provided input."
# Step 2: Perform search
# Search query parameters
params = {
'q': rephrased_query,
'format': 'json',
'time_range': time_range,
'language': language,
'category': category,
'engines': ','.join(engines),
'safesearch': safesearch
}
# Remove empty parameters
params = {k: v for k, v in params.items() if v != ""}
# If no engines are specified, set default engines
if 'engines' not in params:
params['engines'] = 'google' # Default to 'google' or any preferred engine
logger.info("No engines specified. Defaulting to 'google'.")
# Headers for SearXNG request
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'en-US,en;q=0.5',
'Origin': 'https://shreyas094-searxng-local.hf.space',
'Referer': 'https://shreyas094-searxng-local.hf.space/',
'DNT': '1',
'Connection': 'keep-alive',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-origin',
}
scraped_content = []
page = 1
while len(scraped_content) < num_results:
# Update params with current page
params['pageno'] = page
# Send request to SearXNG
logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})")
session = requests_retry_session()
try:
if method.upper() == "GET":
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
else: # POST
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
response.raise_for_status()
except requests.exceptions.RequestException as e:
logger.error(f"Error during SearXNG request: {e}")
return f"An error occurred during the search request: {e}"
search_results = response.json()
logger.debug(f"SearXNG Response: {search_results}")
results = search_results.get('results', [])
if not results:
logger.warning(f"No more results returned from SearXNG on page {page}.")
break
for result in results:
if len(scraped_content) >= num_results:
break
url = result.get('url', '')
title = result.get('title', 'No title')
if not is_valid_url(url):
logger.warning(f"Invalid URL: {url}")
continue
try:
logger.info(f"Processing content from: {url}")
content = scrape_full_content(url, max_chars, timeout, use_pydf2)
if content is None: # This means it's a PDF and use_pydf2 is False
continue
if not content:
logger.warning(f"Failed to scrape content from {url}")
continue
scraped_content.append({
"title": title,
"url": url,
"content": content,
"scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper"
})
logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}")
except requests.exceptions.RequestException as e:
logger.error(f"Error scraping {url}: {e}")
except Exception as e:
logger.error(f"Unexpected error while scraping {url}: {e}")
page += 1
if not scraped_content:
logger.warning("No content scraped from search results.")
return "No content could be scraped from the search results."
logger.info(f"Successfully scraped {len(scraped_content)} documents.")
# Step 4: Assess relevance, summarize, and check for uniqueness
relevant_documents = []
unique_summaries = []
for doc in scraped_content:
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, model, temperature=llm_temperature)
relevance, summary = assessment.split('\n', 1)
if relevance.strip().lower() == "relevant: yes":
summary_text = summary.replace("Summary: ", "").strip()
if is_content_unique(summary_text, unique_summaries):
relevant_documents.append({
"title": doc['title'],
"url": doc['url'],
"summary": summary_text,
"scraper": doc['scraper']
})
unique_summaries.append(summary_text)
else:
logger.info(f"Skipping similar content: {doc['title']}")
if not relevant_documents:
logger.warning("No relevant and unique documents found.")
return "No relevant and unique news found for the given query."
# Step 5: Rerank documents based on similarity to query
reranked_docs = rerank_documents(rephrased_query, relevant_documents, similarity_threshold=0.95, max_results=num_results)
if not reranked_docs:
logger.warning("No documents remained after reranking.")
return "No relevant news found after filtering and ranking."
logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, related documents.")
# Step 5: Scrape full content for top documents (up to num_results)
for doc in reranked_docs[:num_results]:
full_content = scrape_full_content(doc['url'], max_chars)
doc['full_content'] = full_content
# Prepare JSON for LLM
llm_input = {
"query": query,
"documents": [
{
"title": doc['title'],
"url": doc['url'],
"summary": doc['summary'],
"full_content": doc['full_content']
} for doc in reranked_docs[:num_results]
]
}
# Step 6: LLM Summarization
llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
return llm_summary
except Exception as e:
logger.error(f"Unexpected error in search_and_scrape: {e}")
return f"An unexpected error occurred during the search and scrape process: {e}"
# Helper function to get the appropriate client for each model
def get_client_for_model(model: str) -> Any:
if model == "huggingface":
return InferenceClient("mistralai/Mistral-Small-Instruct-2409", token=HF_TOKEN)
elif model == "groq":
return Groq(api_key=GROQ_API_KEY)
elif model == "mistral":
return Mistral(api_key=MISTRAL_API_KEY)
elif CUSTOM_LLM and (model in fetch_custom_models() or model == CUSTOM_LLM_DEFAULT_MODEL):
return None # CustomModel doesn't need a client
else:
raise ValueError(f"Unsupported model: {model}")
def chat_function(message: str, history: List[Tuple[str, str]], only_web_search: bool, num_results: int, max_chars: int, time_range: str, language: str, category: str, engines: List[str], safesearch: int, method: str, llm_temperature: float, model: str, use_pydf2: bool):
chat_history = "\n".join([f"{role}: {msg}" for role, msg in history])
# Create the appropriate AI model
ai_model = AIModelFactory.create_model(model, get_client_for_model(model))
if only_web_search:
query_type = "web_search"
else:
query_type = determine_query_type(message, chat_history, ai_model)
if query_type == "knowledge_base":
response = generate_ai_response(message, chat_history, ai_model, llm_temperature)
else: # web_search
gr.Info("Initiating Web Search")
yield "Request you to sit back and relax until I scrape the web for up-to-date information"
response = search_and_scrape(
query=message,
chat_history=chat_history,
ai_model=ai_model,
num_results=num_results,
max_chars=max_chars,
time_range=time_range,
language=language,
category=category,
engines=engines,
safesearch=safesearch,
method=method,
llm_temperature=llm_temperature,
model=model,
use_pydf2=use_pydf2
)
yield response
iface = gr.ChatInterface(
chat_function,
title="Web Scraper for News with Sentinel AI",
description="Ask Sentinel any question. It will search the web for recent information or use its knowledge base as appropriate.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
additional_inputs=[
gr.Checkbox(label="Only do web search", value=True), # Add this line
gr.Slider(5, 20, value=3, step=1, label="Number of initial results"),
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
gr.Dropdown(["", "day", "week", "month", "year"], value="", label="Time Range"),
gr.Dropdown(["", "all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="", label="Language"),
gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="general", label="Category"),
gr.Dropdown(
["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"],
multiselect=True,
value=["google", "duckduckgo", "bing", "qwant"],
label="Engines"
),
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
gr.Radio(["GET", "POST"], value="GET", label="HTTP Method"),
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
gr.Dropdown(all_models, value=default_model, label="LLM Model"),
gr.Checkbox(label="Use PyPDF2 for PDF scraping", value=False),
],
additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True),
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=500,
)
)
if __name__ == "__main__":
logger.info("Starting the SearXNG Scraper for News using ChatInterface with Advanced Parameters")
iface.launch(share=True) |