File size: 24,993 Bytes
33f1e50 72ddedb 33f1e50 9988100 33f1e50 72ddedb 33f1e50 218de65 72ddedb 33f1e50 72ddedb 33f1e50 c17888a 33f1e50 72ddedb 33f1e50 84a4885 33f1e50 3817f14 84a4885 33f1e50 84a4885 33f1e50 84a4885 33f1e50 84a4885 33f1e50 84a4885 33f1e50 84a4885 33f1e50 72ddedb 33f1e50 72ddedb 33f1e50 72ddedb 33f1e50 72ddedb 33f1e50 72ddedb 33f1e50 72ddedb 33f1e50 72ddedb 33f1e50 6057fe5 33f1e50 6057fe5 33f1e50 72ddedb 33f1e50 4706059 6057fe5 33f1e50 84a4885 33f1e50 4706059 33f1e50 4706059 33f1e50 4706059 33f1e50 4706059 33f1e50 4706059 33f1e50 4706059 33f1e50 4706059 33f1e50 4706059 33f1e50 4706059 9988100 4706059 84a4885 4706059 9988100 4706059 33f1e50 4706059 33f1e50 4706059 6057fe5 33f1e50 4706059 33f1e50 218de65 33f1e50 72ddedb 33f1e50 c17888a 33f1e50 72ddedb 33f1e50 72ddedb 33f1e50 72ddedb 33f1e50 84a4885 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import requests
import gradio as gr
from bs4 import BeautifulSoup
import logging
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from trafilatura import fetch_url, extract
from trafilatura import extract
from trafilatura.settings import use_config
from urllib.request import urlopen, Request
import json
from huggingface_hub import InferenceClient
import random
import time
from sentence_transformers import SentenceTransformer, util
import torch
from datetime import datetime
import os
from dotenv import load_dotenv
import certifi
# Load environment variables from a .env file
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# SearXNG instance details
SEARXNG_URL = 'https://shreyas094-searxng-local.hf.space/search'
SEARXNG_KEY = 'f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5'
# Use the environment variable
HF_TOKEN = os.getenv('HF_TOKEN')
client = InferenceClient(
"mistralai/Mistral-Nemo-Instruct-2407",
token=HF_TOKEN,
)
# Initialize the similarity model
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
# Set up a session with retry mechanism
def requests_retry_session(
retries=0,
backoff_factor=0.1,
status_forcelist=(500, 502, 504),
session=None,
):
session = session or requests.Session()
retry = Retry(
total=retries,
read=retries,
connect=retries,
backoff_factor=backoff_factor,
status_forcelist=status_forcelist,
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
return session
def is_valid_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
def scrape_with_bs4(url, session):
try:
response = session.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
if main_content:
content = main_content.get_text(strip=True)
else:
content = soup.get_text(strip=True)
return content
except Exception as e:
logger.error(f"Error scraping {url} with BeautifulSoup: {e}")
return ""
def scrape_with_trafilatura(url):
try:
downloaded = fetch_url(url)
content = extract(downloaded)
return content or ""
except Exception as e:
logger.error(f"Error scraping {url} with Trafilatura: {e}")
return ""
def rephrase_query(chat_history, query, temperature=0.2):
system_prompt = """You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps:
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual.
3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context.
4. Provide ONLY the rephrased query without any additional explanation or reasoning."""
user_prompt = f"""
Context:
{chat_history}
New query: {query}
Rephrased query:
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
logger.info(f"Sending rephrasing request to LLM with temperature {temperature}")
response = client.chat_completion(
messages=messages,
max_tokens=150,
temperature=temperature
)
logger.info("Received rephrased query from LLM")
rephrased_question = response.choices[0].message.content.strip()
# Remove surrounding quotes if present
if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \
(rephrased_question.startswith("'") and rephrased_question.endswith("'")):
rephrased_question = rephrased_question[1:-1].strip()
logger.info(f"Rephrased Query (cleaned): {rephrased_question}")
return rephrased_question
except Exception as e:
logger.error(f"Error rephrasing query with LLM: {e}")
return query # Fallback to original query if rephrasing fails
def rerank_documents(query, documents):
try:
# Step 1: Encode the query and document summaries
query_embedding = similarity_model.encode(query, convert_to_tensor=True)
doc_summaries = [doc['summary'] for doc in documents]
if not doc_summaries:
logger.warning("No document summaries to rerank.")
return documents # Return original documents if there's nothing to rerank
doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True)
# Step 2: Compute Cosine Similarity
cosine_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
# Step 3: Compute Dot Product Similarity
dot_product_scores = torch.matmul(query_embedding, doc_embeddings.T)
# Ensure dot_product_scores is a 1-D tensor
if dot_product_scores.dim() == 0:
dot_product_scores = dot_product_scores.unsqueeze(0)
# Combine documents, cosine scores, and dot product scores
scored_documents = list(zip(documents, cosine_scores, dot_product_scores))
# Step 4: Sort documents by cosine similarity score
scored_documents.sort(key=lambda x: x[1], reverse=True)
# Step 5: Return only the top 5 documents
reranked_docs = [doc[0] for doc in scored_documents[:5]]
logger.info(f"Reranked to top {len(reranked_docs)} documents.")
return reranked_docs
except Exception as e:
logger.error(f"Error during reranking documents: {e}")
return documents[:5] # Fallback to first 5 documents if reranking fails
def compute_similarity(text1, text2):
# Encode the texts
embedding1 = similarity_model.encode(text1, convert_to_tensor=True)
embedding2 = similarity_model.encode(text2, convert_to_tensor=True)
# Compute cosine similarity
cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2)
return cosine_similarity.item()
def is_content_unique(new_content, existing_contents, similarity_threshold=0.8):
for existing_content in existing_contents:
similarity = compute_similarity(new_content, existing_content)
if similarity > similarity_threshold:
return False
return True
def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2):
system_prompt = """You are a financial analyst AI assistant. Your task is to assess whether the given text is relevant to the user's query from a financial perspective and provide a brief summary if it is relevant."""
user_prompt = f"""
Query: {query}
Document Content:
{document['content']}
Instructions:
1. Assess if the document is relevant to the query from a financial analyst's perspective.
2. If relevant, summarize the main points in 1-2 sentences.
3. If not relevant, simply state "Not relevant".
Your response should be in the following format:
Relevant: [Yes/No]
Summary: [Your 1-2 sentence summary if relevant, or "Not relevant" if not]
Remember to focus on financial aspects and implications in your assessment and summary.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
response = llm_client.chat_completion(
messages=messages,
max_tokens=150,
temperature=temperature
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error assessing relevance and summarizing with LLM: {e}")
return "Error: Unable to assess relevance and summarize"
def scrape_full_content(url, scraper="trafilatura", max_chars=3000):
try:
logger.info(f"Scraping full content from: {url}")
if scraper == "bs4":
session = requests_retry_session()
response = session.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Try to find the main content
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
if main_content:
content = main_content.get_text(strip=True, separator='\n')
else:
content = soup.get_text(strip=True, separator='\n')
else: # trafilatura
downloaded = fetch_url(url)
content = extract(downloaded, include_comments=False, include_tables=True, no_fallback=False)
# Limit the content to max_chars
return content[:max_chars] if content else ""
except Exception as e:
logger.error(f"Error scraping full content from {url}: {e}")
return ""
def llm_summarize(query, documents, llm_client, temperature=0.2):
system_prompt = """You are Sentinel, a world class Financial analysis AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them."""
# Prepare the context from the documents
context = "\n\n".join([f"Document {i+1}:\nTitle: {doc['title']}\nURL: {doc['url']}\n(SCRAPED CONTENT)\n{doc['full_content']}\n(/SCRAPED CONTENT)" for i, doc in enumerate(documents)])
user_prompt = f"""
Query: {query}
Context: {context}
Instructions: Write a detailed, long and complete research document that is informative and relevant to the user, who is a financial analyst, query based on provided context (the context consists of search results containing a brief description of the content of that page). You must use this context to answer the user's query in the best way possible.
Use an unbiased and writer tone in your response. Do not repeat the text. You must provide the answer in the response itself. If the user asks for links you can provide them.
If the user asks to summarize content from some links, you will be provided the entire content of the page inside the (SCRAPED CONTENT) block.
You can then use this content to summarize the text.Your responses should be detailed in length be informative, accurate and relevant to the user's query.
You can use markdowns to format your response. You should use bullet points to list the information.
Make sure the answer is long and is informative in a research document style. You have to cite the answer using [number] notation along with the appropriate source URL embedded in the notation.
You must cite the sentences with their relevant context number.
You must cite each and every part of the answer so the user can know where the information is coming from. Place these citations at the end of that particular sentence.
You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times.
The number refers to the number of the search result (passed in the context) used to generate that part of the answer. Anything inside the following (SCRAPED CONTENT) block provided below is for your knowledge returned by the search engine and is not shared by the user.
You have to answer question on the basis of it and cite the relevant information from it but you do not have to talk about the context in your response.
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
You do not need to do this for summarization tasks. Anything between the (SCRAPED CONTENT) is retrieved from a search engine and is not a part of the conversation with the user.
Please provide a comprehensive summary based on the above instructions:
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
response = llm_client.chat_completion(
messages=messages,
max_tokens=5000,
temperature=temperature
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error in LLM summarization: {e}")
return "Error: Unable to generate a summary. Please try again."
import requests
from trafilatura import extract
from trafilatura.settings import use_config
from urllib.request import urlopen, Request
def search_and_scrape(query, chat_history, num_results=5, scraper="trafilatura", max_chars=3000, time_range="", language="all", category="",
engines=[], safesearch=2, method="GET", llm_temperature=0.2):
try:
# Step 1: Rephrase the Query
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
logger.info(f"Rephrased Query: {rephrased_query}")
if not rephrased_query or rephrased_query.lower() == "not_needed":
logger.info("No need to perform search based on the rephrased query.")
return "No search needed for the provided input."
# Search query parameters
params = {
'q': rephrased_query,
'format': 'json',
'time_range': time_range,
'language': language,
'category': category,
'engines': ','.join(engines),
'safesearch': safesearch
}
# Remove empty parameters
params = {k: v for k, v in params.items() if v != ""}
# If no engines are specified, set default engines
if 'engines' not in params:
params['engines'] = 'google' # Default to 'google' or any preferred engine
logger.info("No engines specified. Defaulting to 'google'.")
# Headers for SearXNG request
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'en-US,en;q=0.5',
'Origin': 'https://shreyas094-searxng-local.hf.space',
'Referer': 'https://shreyas094-searxng-local.hf.space/',
'DNT': '1',
'Connection': 'keep-alive',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-origin',
}
scraped_content = []
page = 1
while len(scraped_content) < num_results:
# Update params with current page
params['pageno'] = page
# Send request to SearXNG
logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})")
session = requests_retry_session()
try:
if method.upper() == "GET":
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
else: # POST
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
response.raise_for_status()
except requests.exceptions.RequestException as e:
logger.error(f"Error during SearXNG request: {e}")
return f"An error occurred during the search request: {e}"
search_results = response.json()
logger.debug(f"SearXNG Response: {search_results}")
results = search_results.get('results', [])
if not results:
logger.warning(f"No more results returned from SearXNG on page {page}.")
break
for result in results:
if len(scraped_content) >= num_results:
break
url = result.get('url', '')
title = result.get('title', 'No title')
if not is_valid_url(url):
logger.warning(f"Invalid URL: {url}")
continue
try:
logger.info(f"Scraping content from: {url}")
# Implement a retry mechanism with different user agents
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
]
content = ""
for ua in user_agents:
try:
if scraper == "bs4":
session.headers.update({'User-Agent': ua})
content = scrape_with_bs4(url, session)
else: # trafilatura
# Use urllib to handle custom headers for trafilatura
req = Request(url, headers={'User-Agent': ua})
with urlopen(req) as response:
downloaded = response.read()
# Configure trafilatura to use a specific user agent
config = use_config()
config.set("DEFAULT", "USER_AGENT", ua)
content = extract(downloaded, config=config)
if content:
break
except requests.exceptions.HTTPError as e:
if e.response.status_code == 403:
logger.warning(f"403 Forbidden error with User-Agent: {ua}. Trying next...")
continue
else:
raise
except Exception as e:
logger.error(f"Error scraping {url} with User-Agent {ua}: {str(e)}")
continue
if not content:
logger.warning(f"Failed to scrape content from {url} after trying multiple User-Agents")
continue
# Limit content to max_chars
scraped_content.append({
"title": title,
"url": url,
"content": content[:max_chars],
"scraper": scraper
})
logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}")
except requests.exceptions.RequestException as e:
logger.error(f"Error scraping {url}: {e}")
except Exception as e:
logger.error(f"Unexpected error while scraping {url}: {e}")
page += 1
if not scraped_content:
logger.warning("No content scraped from search results.")
return "No content could be scraped from the search results."
logger.info(f"Successfully scraped {len(scraped_content)} documents.")
# Step 3: Assess relevance, summarize, and check for uniqueness
relevant_documents = []
unique_summaries = []
for doc in scraped_content:
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
relevance, summary = assessment.split('\n', 1)
if relevance.strip().lower() == "relevant: yes":
summary_text = summary.replace("Summary: ", "").strip()
if is_content_unique(summary_text, unique_summaries):
relevant_documents.append({
"title": doc['title'],
"url": doc['url'],
"summary": summary_text,
"scraper": doc['scraper']
})
unique_summaries.append(summary_text)
else:
logger.info(f"Skipping similar content: {doc['title']}")
if not relevant_documents:
logger.warning("No relevant and unique documents found.")
return "No relevant and unique financial news found for the given query."
# Step 4: Rerank documents based on similarity to query
reranked_docs = rerank_documents(rephrased_query, relevant_documents)
if not reranked_docs:
logger.warning("No documents remained after reranking.")
return "No relevant financial news found after filtering and ranking."
logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, finance-related documents.")
# Step 5: Scrape full content for top documents (up to num_results)
for doc in reranked_docs[:num_results]:
full_content = scrape_full_content(doc['url'], scraper, max_chars)
doc['full_content'] = full_content
# Step 6: LLM Summarization
llm_summary = llm_summarize(query, reranked_docs[:num_results], client, temperature=llm_temperature)
return llm_summary
except Exception as e:
logger.error(f"Unexpected error in search_and_scrape: {e}")
return f"An unexpected error occurred during the search and scrape process: {e}"
def chat_function(message, history, num_results, scraper, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature):
chat_history = "\n".join([f"{role}: {msg}" for role, msg in history])
response = search_and_scrape(
query=message,
chat_history=chat_history,
num_results=num_results,
scraper=scraper,
max_chars=max_chars,
time_range=time_range,
language=language,
category=category,
engines=engines,
safesearch=safesearch,
method=method,
llm_temperature=llm_temperature
)
yield response
iface = gr.ChatInterface(
chat_function,
title="SearXNG Scraper for Financial News",
description="Enter your query, and I'll search the web for the most recent and relevant financial news, scrape content, and provide summarized results.",
additional_inputs=[
gr.Slider(5, 20, value=10, step=1, label="Number of initial results"),
gr.Dropdown(["bs4", "trafilatura"], value="trafilatura", label="Scraping Method"),
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
gr.Dropdown(["", "day", "week", "month", "year"], value="year", label="Time Range"),
gr.Dropdown(["all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="en", label="Language"),
gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="", label="Category"),
gr.Dropdown(
["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"],
multiselect=True,
value=["google", "duckduckgo"],
label="Engines"
),
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
gr.Radio(["GET", "POST"], value="POST", label="HTTP Method"),
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
],
additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True),
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
)
)
if __name__ == "__main__":
logger.info("Starting the SearXNG Scraper for Financial News using ChatInterface with Advanced Parameters")
iface.launch(share=True) |