File size: 27,997 Bytes
33f1e50 72ddedb 33f1e50 d07bea9 9988100 33f1e50 72ddedb 33f1e50 218de65 90e8b4f 6773bde a5594d9 b688d25 e181e71 1a8ea50 5a71f95 e181e71 72ddedb 33f1e50 6773bde 33f1e50 1a8ea50 1e878de 1a8ea50 33f1e50 72ddedb 5a71f95 72ddedb 33f1e50 c17888a 33f1e50 72ddedb 33f1e50 a5594d9 b577b65 a5594d9 b577b65 a5594d9 b577b65 a5594d9 b577b65 6773bde a5594d9 6773bde 6c48447 a5594d9 6c48447 f57b788 6c48447 6773bde 33f1e50 e181e71 c476da1 a0f74b4 c476da1 a0f74b4 c476da1 e181e71 c476da1 a0f74b4 c476da1 a0f74b4 e181e71 c476da1 a0f74b4 c476da1 e181e71 c476da1 33f1e50 120e548 33f1e50 72ddedb e181e71 33f1e50 e181e71 33f1e50 e181e71 72ddedb e181e71 33f1e50 e181e71 33f1e50 e181e71 33f1e50 e181e71 33f1e50 c51303e 33f1e50 e181e71 33f1e50 e181e71 33f1e50 c51303e e181e71 c51303e 33f1e50 c51303e e181e71 33f1e50 e181e71 c51303e 33f1e50 e181e71 c51303e 0c8a7e0 33f1e50 c51303e 1aa2150 8bba703 33f1e50 a5594d9 c6a0be6 8bba703 c6a0be6 b577b65 a5594d9 33f1e50 1a8ea50 e4b2310 33f1e50 e4b2310 33f1e50 e4b2310 33f1e50 1a8ea50 7560c54 a0f74b4 1a8ea50 128980b 1a8ea50 33f1e50 5a71f95 1e878de b864c9d 33f1e50 5239e89 1e878de b864c9d 1e878de 33f1e50 4706059 1e878de 33f1e50 1e878de b864c9d 1e878de 33f1e50 1e878de b864c9d 1e878de 33f1e50 6c0f253 07efc76 1e878de 07efc76 a5594d9 07efc76 1e878de 07efc76 6773bde 9988100 07efc76 a5594d9 1e878de 07efc76 4706059 1e878de 33f1e50 4706059 33f1e50 c51303e e181e71 c51303e 33f1e50 c51303e 33f1e50 e181e71 33f1e50 5a71f95 e4b2310 0d492ce e4b2310 5a71f95 0d492ce 5a71f95 e4b2310 1a8ea50 0d492ce 1a8ea50 33f1e50 218de65 33f1e50 1e878de 33f1e50 5239e89 1a8ea50 33f1e50 5a71f95 b4f5c22 33f1e50 5239e89 33f1e50 120e548 72ddedb 33f1e50 c17888a 3a81b27 33f1e50 3a81b27 33f1e50 72ddedb 33f1e50 1a8ea50 72ddedb 33f1e50 6552a74 33f1e50 72ddedb 33f1e50 84a4885 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
import requests
import gradio as gr
from bs4 import BeautifulSoup
import logging
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from requests.exceptions import Timeout
from urllib.request import urlopen, Request
import json
from huggingface_hub import InferenceClient
import random
import time
from sentence_transformers import SentenceTransformer, util
import torch
from datetime import datetime
import os
from dotenv import load_dotenv
import certifi
import requests
from newspaper import Article
import PyPDF2
import io
import requests
import random
import datetime
from groq import Groq
import faiss
import numpy as np
# Automatically get the current year
current_year = datetime.datetime.now().year
# Load environment variables from a .env file
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# SearXNG instance details
SEARXNG_URL = 'https://shreyas094-searxng-local.hf.space/search'
SEARXNG_KEY = 'f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5'
# Use the environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
client = InferenceClient(
"mistralai/Mistral-Nemo-Instruct-2407",
token=HF_TOKEN,
)
# Default API key for examples (replace with a dummy value or leave empty)
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
groq_client = Groq(api_key=GROQ_API_KEY)
# Initialize the similarity model
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
# Global variable to store the FAISS index
faiss_index = None
document_store = []
# Set up a session with retry mechanism
def requests_retry_session(
retries=0,
backoff_factor=0.1,
status_forcelist=(500, 502, 504),
session=None,
):
session = session or requests.Session()
retry = Retry(
total=retries,
read=retries,
connect=retries,
backoff_factor=backoff_factor,
status_forcelist=status_forcelist,
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
return session
def is_valid_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
def scrape_pdf_content(url, max_chars=3000, timeout=5):
try:
logger.info(f"Scraping PDF content from: {url}")
# Download the PDF file
response = requests.get(url, timeout=timeout)
response.raise_for_status()
# Create a PDF reader object
pdf_reader = PyPDF2.PdfReader(io.BytesIO(response.content))
# Extract text from all pages
content = ""
for page in pdf_reader.pages:
content += page.extract_text() + "\n"
# Limit the content to max_chars
return content[:max_chars] if content else ""
except requests.Timeout:
logger.error(f"Timeout error while scraping PDF content from {url}")
return ""
except Exception as e:
logger.error(f"Error scraping PDF content from {url}: {e}")
return ""
def scrape_with_newspaper(url):
if url.lower().endswith('.pdf'):
return scrape_pdf_content(url)
logger.info(f"Starting to scrape with Newspaper3k: {url}")
try:
article = Article(url)
article.download()
article.parse()
# Combine title and text
content = f"Title: {article.title}\n\n"
content += article.text
# Add publish date if available
if article.publish_date:
content += f"\n\nPublish Date: {article.publish_date}"
# Add authors if available
if article.authors:
content += f"\n\nAuthors: {', '.join(article.authors)}"
# Add top image URL if available
if article.top_image:
content += f"\n\nTop Image URL: {article.top_image}"
return content
except Exception as e:
logger.error(f"Error scraping {url} with Newspaper3k: {e}")
return ""
def rephrase_query(chat_history, query, temperature=0.2):
system_prompt = f"""
You are a highly intelligent and context-aware conversational assistant. Your tasks are as follows:
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
2. For both continuations and new topics:
a. **Entity Identification and Quotation**:
- Analyze the user's query to identify the main entities (e.g., organizations, brands, products, locations).
- For each identified entity, enclose ONLY the entity itself in double quotes within the query.
- If no identifiable entities are found, proceed without adding quotes.
b. **Query Preservation**:
- Maintain the entire original query, including any parts after commas or other punctuation.
- Do not remove or truncate any part of the original query.
3. If it's a continuation:
- Incorporate relevant information from the context to make the query more specific and contextual.
- Ensure that entities from the previous context are properly quoted if they appear in the rephrased query.
4. For both continuations and new topics:
- Append "after: {current_year}" to the end of the rephrased query.
- Ensure there is a space before "after:" for proper formatting.
- Do not use quotes or the "+" operator when adding the year.
5. **Output**:
- Return ONLY the rephrased query, ensuring it is concise, clear, and contextually accurate.
- Do not include any additional commentary or explanation.
### Example Scenarios
**Scenario 1: New Topic**
- **User Query**: "What is the latest news on Golomt Bank?"
- **Rephrased Query**: "What is the latest news on \"Golomt Bank\" after: {current_year}"
**Scenario 2: Continuation**
- **Previous Query**: "What is the latest news on Golomt Bank?"
- **User Query**: "How did the Bank perform in Q2 2024?"
- **Rephrased Query**: "How did \"Golomt Bank\" perform in Q2 2024 after: {current_year}"
**Scenario 3: Query with Multiple Entities and Comma**
- **User Query**: "What is the latest news about Prospect Capital, did the rating change?"
- **Rephrased Query**: "What is the latest news about \"Prospect Capital\", did the rating change after: {current_year}"
**Scenario 4: Query Without Recognizable Entities**
- **User Query**: "How does photosynthesis work?"
- **Rephrased Query**: "How does photosynthesis work? after: {current_year}"
"""
user_prompt = f"""
Conversation context:
{chat_history}
New query: {query}
Rephrased query:
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
logger.info(f"Sending rephrasing request to LLM with temperature {temperature}")
response = client.chat_completion(
messages=messages,
max_tokens=150,
temperature=temperature
)
logger.info("Received rephrased query from LLM")
rephrased_question = response.choices[0].message.content.strip()
# Remove surrounding quotes if present
if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \
(rephrased_question.startswith("'") and rephrased_question.endswith("'")):
rephrased_question = rephrased_question[1:-1].strip()
logger.info(f"Rephrased Query (cleaned): {rephrased_question}")
return rephrased_question
except Exception as e:
logger.error(f"Error rephrasing query with LLM: {e}")
return query # Fallback to original query if rephrasing fails
def rerank_documents(query, documents, similarity_threshold=0.95, max_results=5):
try:
# Step 1: Encode the query and document summaries
query_embedding = similarity_model.encode(query, convert_to_tensor=True)
doc_summaries = [doc['summary'] for doc in documents]
if not doc_summaries:
logger.warning("No document summaries to rerank.")
return documents
doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True)
# Step 2: Compute Cosine Similarity
cosine_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
# Combine documents and cosine scores
scored_documents = list(zip(documents, cosine_scores))
# Step 3: Sort documents by cosine similarity score
scored_documents.sort(key=lambda x: x[1], reverse=True)
# Step 4: Filter out similar documents
filtered_docs = []
for doc, score in scored_documents:
if score < 0.5: # If similarity to query is too low, skip
continue
# Check similarity with already selected documents
is_similar = False
for selected_doc in filtered_docs:
similarity = util.pytorch_cos_sim(
similarity_model.encode(doc['summary'], convert_to_tensor=True),
similarity_model.encode(selected_doc['summary'], convert_to_tensor=True)
)
if similarity > similarity_threshold:
is_similar = True
break
if not is_similar:
filtered_docs.append(doc)
if len(filtered_docs) >= max_results:
break
logger.info(f"Reranked and filtered to {len(filtered_docs)} unique documents.")
return filtered_docs
except Exception as e:
logger.error(f"Error during reranking documents: {e}")
return documents[:max_results] # Fallback to first max_results documents if reranking fails
def compute_similarity(text1, text2):
# Encode the texts
embedding1 = similarity_model.encode(text1, convert_to_tensor=True)
embedding2 = similarity_model.encode(text2, convert_to_tensor=True)
# Compute cosine similarity
cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2)
return cosine_similarity.item()
def is_content_unique(new_content, existing_contents, similarity_threshold=0.8):
for existing_content in existing_contents:
similarity = compute_similarity(new_content, existing_content)
if similarity > similarity_threshold:
return False
return True
def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2):
system_prompt = """You are a world-class AI assistant specializing in financial news analysis. Your task is to assess the relevance of a given document to a user's query and provide a detailed summary if it's relevant."""
user_prompt = f"""
Query: {query}
Document Title: {document['title']}
Document Content:
{document['content'][:1000]} # Limit to first 1000 characters for efficiency
Instructions:
1. Assess if the document is relevant to the QUERY made by the user.
2. If relevant, provide a detailed summary that captures the unique aspects of this particular news item. Include:
- Key facts and figures
- Dates of events or announcements
- Names of important entities mentioned
- Any financial metrics or changes reported
- The potential impact or significance of the news
3. If not relevant, simply state "Not relevant".
Your response should be in the following format:
Relevant: [Yes/No]
Summary: [Your detailed summary if relevant, or "Not relevant" if not]
Remember to focus on financial aspects and implications in your assessment and summary. Aim to make the summary distinctive, highlighting what makes this particular news item unique compared to similar news.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
response = llm_client.chat_completion(
messages=messages,
max_tokens=300, # Increased to allow for more detailed summaries
temperature=temperature,
top_p=0.9,
frequency_penalty=1.4
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error assessing relevance and summarizing with LLM: {e}")
return "Error: Unable to assess relevance and summarize"
def scrape_full_content(url, max_chars=3000, timeout=5):
try:
logger.info(f"Scraping full content from: {url}")
# Check if the URL ends with .pdf
if url.lower().endswith('.pdf'):
return scrape_pdf_content(url, max_chars, timeout)
# Use newspaper for non-PDF content
article = Article(url)
article.download()
article.parse()
# Combine title and text
content = f"Title: {article.title}\n\n"
content += article.text
# Add publish date if available
if article.publish_date:
content += f"\n\nPublish Date: {article.publish_date}"
# Add authors if available
if article.authors:
content += f"\n\nAuthors: {', '.join(article.authors)}"
# Add top image URL if available
if article.top_image:
content += f"\n\nTop Image URL: {article.top_image}"
# Limit the content to max_chars
return content[:max_chars] if content else ""
except requests.Timeout:
logger.error(f"Timeout error while scraping full content from {url}")
return ""
except Exception as e:
logger.error(f"Error scraping full content from {url}: {e}")
return ""
def llm_summarize(json_input, model, temperature=0.2):
system_prompt = """You are Sentinel, a world-class Financial analysis AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them."""
user_prompt = f"""
Please provide a comprehensive summary based on the following JSON input:
{json_input}
Instructions:
1. Analyze the query and the provided documents.
2. Write a detailed, long, and complete research document that is informative and relevant to the user's query.
3. Use an unbiased and professional tone in your response.
4. Do not repeat text verbatim from the input.
5. Provide the answer in the response itself.
6. You can use markdown to format your response.
7. Use bullet points to list information where appropriate.
8. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation.
9. Place these citations at the end of the relevant sentences.
10. You can cite the same sentence multiple times if it's relevant to different parts of your answer.
Your response should be detailed, informative, accurate, and directly relevant to the user's query."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
if model == "groq":
response = groq_client.chat.completions.create(
messages=messages,
model="llama-3.1-8b-instant",
max_tokens=5500,
temperature=temperature,
top_p=0.9,
presence_penalty=1.2,
stream=False
)
return response.choices[0].message.content.strip()
else:
response = client.chat_completion(
messages=messages,
max_tokens=10000,
temperature=temperature,
frequency_penalty=1.4,
top_p=0.9
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error in LLM summarization: {e}")
return "Error: Unable to generate a summary. Please try again."
def create_or_reset_faiss_index(dimension=384): # 384 is the dimension for 'all-MiniLM-L6-v2' model
global faiss_index
faiss_index = faiss.IndexFlatL2(dimension)
def add_documents_to_faiss(documents):
global faiss_index, document_store
# Clear previous documents
document_store.clear()
# Create embeddings for the documents
embeddings = []
for doc in documents:
# Combine title and content for embedding
text_to_embed = f"{doc['title']} {doc['content'][:500]}" # Limit content to first 500 chars for efficiency
embedding = embedding_model.encode(text_to_embed)
embeddings.append(embedding)
document_store.append(doc)
# Convert to numpy array
embeddings_array = np.array(embeddings).astype('float32')
# Add to FAISS index
faiss_index.add(embeddings_array)
def search_similar_documents(query, k=5):
global faiss_index, document_store
# Create query embedding
query_embedding = embedding_model.encode(query)
query_embedding = np.array([query_embedding]).astype('float32')
# Search in FAISS index
distances, indices = faiss_index.search(query_embedding, k)
# Retrieve similar documents
similar_docs = [document_store[i] for i in indices[0]]
return similar_docs
def search_and_scrape(query, chat_history, num_results=5, max_chars=3000, time_range="", language="all", category="",
engines=[], safesearch=2, method="GET", llm_temperature=0.2, timeout=5, model="huggingface"):
try:
# Step 1: Rephrase the Query
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
logger.info(f"Rephrased Query: {rephrased_query}")
if not rephrased_query or rephrased_query.lower() == "not_needed":
logger.info("No need to perform search based on the rephrased query.")
return "No search needed for the provided input."
# Step 2: Perform search
# Search query parameters
params = {
'q': rephrased_query,
'format': 'json',
'time_range': time_range,
'language': language,
'category': category,
'engines': ','.join(engines),
'safesearch': safesearch
}
# Remove empty parameters
params = {k: v for k, v in params.items() if v != ""}
# If no engines are specified, set default engines
if 'engines' not in params:
params['engines'] = 'google' # Default to 'google' or any preferred engine
logger.info("No engines specified. Defaulting to 'google'.")
# Headers for SearXNG request
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'en-US,en;q=0.5',
'Origin': 'https://shreyas094-searxng-local.hf.space',
'Referer': 'https://shreyas094-searxng-local.hf.space/',
'DNT': '1',
'Connection': 'keep-alive',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-origin',
}
scraped_content = []
page = 1
while len(scraped_content) < num_results:
# Update params with current page
params['pageno'] = page
# Send request to SearXNG
logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})")
session = requests_retry_session()
try:
if method.upper() == "GET":
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
else: # POST
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
response.raise_for_status()
except requests.exceptions.RequestException as e:
logger.error(f"Error during SearXNG request: {e}")
return f"An error occurred during the search request: {e}"
search_results = response.json()
logger.debug(f"SearXNG Response: {search_results}")
results = search_results.get('results', [])
if not results:
logger.warning(f"No more results returned from SearXNG on page {page}.")
break
for result in results:
if len(scraped_content) >= num_results:
break
url = result.get('url', '')
title = result.get('title', 'No title')
if not is_valid_url(url):
logger.warning(f"Invalid URL: {url}")
continue
try:
logger.info(f"Processing content from: {url}")
content = scrape_full_content(url, max_chars, timeout)
if not content:
logger.warning(f"Failed to scrape content from {url}")
continue
scraped_content.append({
"title": title,
"url": url,
"content": content,
"scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper"
})
logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}")
except requests.exceptions.RequestException as e:
logger.error(f"Error scraping {url}: {e}")
except Exception as e:
logger.error(f"Unexpected error while scraping {url}: {e}")
page += 1
if not scraped_content:
logger.warning("No content scraped from search results.")
return "No content could be scraped from the search results."
logger.info(f"Successfully scraped {len(scraped_content)} documents.")
# Step 3: Assess relevance, summarize, and check for uniqueness
relevant_documents = []
unique_summaries = []
for doc in scraped_content:
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
relevance, summary = assessment.split('\n', 1)
if relevance.strip().lower() == "relevant: yes":
summary_text = summary.replace("Summary: ", "").strip()
if is_content_unique(summary_text, unique_summaries):
relevant_documents.append({
"title": doc['title'],
"url": doc['url'],
"summary": summary_text,
"scraper": doc['scraper']
})
unique_summaries.append(summary_text)
else:
logger.info(f"Skipping similar content: {doc['title']}")
if not relevant_documents:
logger.warning("No relevant and unique documents found.")
return "No relevant and unique financial news found for the given query."
# Step 4: Rerank documents based on similarity to query
reranked_docs = rerank_documents(rephrased_query, relevant_documents, similarity_threshold=0.95, max_results=num_results)
if not reranked_docs:
logger.warning("No documents remained after reranking.")
return "No relevant financial news found after filtering and ranking."
logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, finance-related documents.")
# After Step 5: Scrape full content for top documents
# Create or reset FAISS index
create_or_reset_faiss_index()
# Add documents to FAISS index
add_documents_to_faiss(reranked_docs[:num_results])
# Search for similar documents in the vector DB
similar_docs = search_similar_documents(query, k=num_results)
# Prepare JSON for LLM, now including similar documents from vector DB
llm_input = {
"query": query,
"documents": [
{
"title": doc['title'],
"url": doc['url'],
"summary": doc['summary'],
"content": doc.get('content', '') # Use get() with a default value
} for doc in reranked_docs[:num_results]
],
"similar_documents": [
{
"title": doc['title'],
"url": doc['url'],
"content": doc.get('content', '')[:500] # Use get() with a default value and limit content for brevity
} for doc in similar_docs
]
}
# Step 6: LLM Summarization
llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
return llm_summary
except Exception as e:
logger.error(f"Unexpected error in search_and_scrape: {e}")
return f"An unexpected error occurred during the search and scrape process: {e}"
def chat_function(message, history, num_results, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature, model):
chat_history = "\n".join([f"{role}: {msg}" for role, msg in history])
response = search_and_scrape(
query=message,
chat_history=chat_history,
num_results=num_results,
max_chars=max_chars,
time_range=time_range,
language=language,
category=category,
engines=engines,
safesearch=safesearch,
method=method,
llm_temperature=llm_temperature,
model=model
)
yield response
iface = gr.ChatInterface(
chat_function,
title="Web Scraper for Financial News",
description="Enter your query, and I'll search the web for the most recent and relevant financial news, scrape content, and provide summarized results.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
additional_inputs=[
gr.Slider(5, 20, value=10, step=1, label="Number of initial results"),
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
gr.Dropdown(["", "day", "week", "month", "year"], value="", label="Time Range"),
gr.Dropdown(["", "all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="", label="Language"),
gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="", label="Category"),
gr.Dropdown(
["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"],
multiselect=True,
value=["google", "duckduckgo", "bing", "qwant"],
label="Engines"
),
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
gr.Radio(["GET", "POST"], value="POST", label="HTTP Method"),
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
gr.Dropdown(["huggingface", "groq"], value="huggingface", label="LLM Model"),
],
additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True),
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=500,
)
)
if __name__ == "__main__":
logger.info("Starting the SearXNG Scraper for Financial News using ChatInterface with Advanced Parameters")
iface.launch(share=True) |