File size: 4,964 Bytes
7ad93dc
9c4eeaf
 
 
bb9e1c7
37f895c
ea24c96
0c6c8a7
 
 
 
 
 
9c4eeaf
 
 
 
0c6c8a7
 
bb9e1c7
 
 
 
 
 
 
9c4eeaf
 
0c6c8a7
 
b4dc99d
 
 
0c6c8a7
b4dc99d
 
9c4eeaf
 
0c6c8a7
 
ea24c96
 
 
 
 
 
 
 
 
e448421
 
 
 
 
 
 
9c4eeaf
 
 
 
 
 
 
 
 
 
 
8827883
 
e448421
9c4eeaf
 
 
 
e334159
 
e448421
e334159
 
9c4eeaf
 
e334159
 
 
 
9c4eeaf
 
e334159
 
e448421
e334159
 
ea24c96
 
 
 
 
 
 
9c4eeaf
9e866e0
 
 
 
e448421
 
 
 
9c4eeaf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
import time 

from transformers import pipeline
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import BartTokenizer, BartForConditionalGeneration
#from transformers import AutoTokenizer, EncoderDecoderModel
#from transformers import AutoTokenizer, LEDForConditionalGeneration
#from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration

##initializing models

#Transformers Approach
def transform_summarize(text):
    pp = pipeline("summarization")
    k=pp(text,max_length=100,do_sample=False)
    return k

#T5
def t5_summarize(text):
    tokenizer = T5Tokenizer.from_pretrained("t5-small")
    model = T5ForConditionalGeneration.from_pretrained("t5-small")

    input_text = "summarize: " + text
    inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=1024, truncation=True)
    outputs = model.generate(inputs, max_length=200, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
    pp = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return pp

#BART
def bart_summarize(text):
    tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
    model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")

    inputs = tokenizer([text], max_length=1024, return_tensors="pt", truncation=True)
    summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=150, early_stopping=True)
    pp = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    return pp

#Encoder-Decoder
# def encoder_decoder(text):
#     model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
#     tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
#     # let's perform inference on a long piece of text
#     input_ids = tokenizer(text, return_tensors="pt").input_ids
#     # autoregressively generate summary (uses greedy decoding by default) 
#     generated_ids = model.generate(input_ids)
#     generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
#     return generated_text
    
# Result
def result(summary):
    st.success('Please wait while we process and summarize')
    time.sleep(12)
    st.subheader(":violet[Your summarized text is:]")
    st.write(summary)

#Title

st.title("SummarizeEasy")
st.header(":violet[Summarize your text with ease!]")
st.divider()
st.write("Enter your text below and click on the button to summarize it.")
text = st.text_area("Enter your text here", height=200)
model = st.radio("Select the model you want to use", ("Transformer","T5", "BART", "Encoder-Decoder"))
st.write("Click on the button to summarize your text.")
button = st.button("Summarize")
st.divider()
st.info("Please note that this is a beta version and summarized content may not be accurate. To get an accurate content the models need to be fined tuned and trained on respective context which requires GPUS. Please feel free to share your feedback with us.")
st.divider()
if button:
    if text:
        if model == "Transformer":
            st.write("You have selected Transformer model.")
            try:
                summary = transform_summarize(text)
                result(summary)
            except Exception:
                st.warning("🚨 Your input text is quite lengthy. For better results, consider providing a shorter text or breaking it into smaller chunks.")
        elif model == "T5":
            st.write("You have selected T5 model.")
            try:
                summary = t5_summarize(text)
            except Exception:
                st.warning("🚨 Your input text is quite lengthy. For better results, consider providing a shorter text or breaking it into smaller chunks.")
        elif model == "BART":
            st.write("You have selected BART model.")
            try:
                summary = bart_summarize(text)
                result(summary)
            except Exception:
                st.warning("🚨 Your input text is quite lengthy. For better results, consider providing a shorter text or breaking it into smaller chunks.")
        # elif model == "Encoder-Decoder":
        #     st.write("You have selected Encoder-Decoder model.")
        #     try:
        #         summary = encoder_decoder(text)
        #         result(summary)
        #     except Exception:
        #         st.warning("🚨 Your input text is quite lengthy. For better results, consider providing a shorter text or breaking it into smaller chunks.")

        #st.toast("Please wait while we summarize your text.")
        #with st.spinner("Summarizing..."):
        #    time.sleep(5)
        #    st.toast("Done!!",icon="πŸŽ‰")
        # st.success('Please wait while we process and summarize')
        # time.sleep(15)
        # st.subheader(":violet[Your summarized text is:]")
        # st.write(summary)
    else:
        st.warning("Please enter the text !!")