File size: 29,785 Bytes
6e11613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import argparse
import json
import os
import sys
from multiprocessing.pool import ThreadPool
from pathlib import Path

import numpy as np
import torch
from tqdm import tqdm

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLO root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

import torch.nn.functional as F
import torchvision.transforms as transforms
from pycocotools import mask as maskUtils
from models.common import DetectMultiBackend
from models.yolo import SegmentationModel
from utils.callbacks import Callbacks
from utils.coco_utils import getCocoIds, getMappingId, getMappingIndex
from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
                           check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
                           non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
from utils.metrics import ConfusionMatrix, box_iou
from utils.plots import output_to_target, plot_val_study
from utils.panoptic.dataloaders import create_dataloader
from utils.panoptic.general import mask_iou, process_mask, process_mask_upsample, scale_image
from utils.panoptic.metrics import Metrics, ap_per_class_box_and_mask, Semantic_Metrics
from utils.panoptic.plots import plot_images_and_masks
from utils.torch_utils import de_parallel, select_device, smart_inference_mode


def save_one_txt(predn, save_conf, shape, file):
    # Save one txt result
    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
    for *xyxy, conf, cls in predn.tolist():
        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
        with open(file, 'a') as f:
            f.write(('%g ' * len(line)).rstrip() % line + '\n')


def save_one_json(predn, jdict, path, class_map, pred_masks):
    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
    from pycocotools.mask import encode

    def single_encode(x):
        rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
        rle["counts"] = rle["counts"].decode("utf-8")
        return rle

    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
    box = xyxy2xywh(predn[:, :4])  # xywh
    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
    pred_masks = np.transpose(pred_masks, (2, 0, 1))
    with ThreadPool(NUM_THREADS) as pool:
        rles = pool.map(single_encode, pred_masks)
    for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
        jdict.append({
            'image_id': image_id,
            'category_id': class_map[int(p[5])],
            'bbox': [round(x, 3) for x in b],
            'score': round(p[4], 5),
            'segmentation': rles[i]})


def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
    """
    Return correct prediction matrix
    Arguments:
        detections (array[N, 6]), x1, y1, x2, y2, conf, class
        labels (array[M, 5]), class, x1, y1, x2, y2
    Returns:
        correct (array[N, 10]), for 10 IoU levels
    """
    if masks:
        if overlap:
            nl = len(labels)
            index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
            gt_masks = gt_masks.repeat(nl, 1, 1)  # shape(1,640,640) -> (n,640,640)
            gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
        if gt_masks.shape[1:] != pred_masks.shape[1:]:
            gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
            gt_masks = gt_masks.gt_(0.5)
        iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
    else:  # boxes
        iou = box_iou(labels[:, 1:], detections[:, :4])

    correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
    correct_class = labels[:, 0:1] == detections[:, 5]
    for i in range(len(iouv)):
        x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match
        if x[0].shape[0]:
            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detect, iou]
            if x[0].shape[0] > 1:
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                # matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
            correct[matches[:, 1].astype(int), i] = True
    return torch.tensor(correct, dtype=torch.bool, device=iouv.device)


@smart_inference_mode()
def run(
        data,
        weights=None,  # model.pt path(s)
        batch_size=32,  # batch size
        imgsz=640,  # inference size (pixels)
        conf_thres=0.001,  # confidence threshold
        iou_thres=0.6,  # NMS IoU threshold
        max_det=300,  # maximum detections per image
        task='val',  # train, val, test, speed or study
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        workers=8,  # max dataloader workers (per RANK in DDP mode)
        single_cls=False,  # treat as single-class dataset
        augment=False,  # augmented inference
        verbose=False,  # verbose output
        save_txt=False,  # save results to *.txt
        save_hybrid=False,  # save label+prediction hybrid results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_json=False,  # save a COCO-JSON results file
        project=ROOT / 'runs/val-pan',  # save to project/name
        name='exp',  # save to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        half=True,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        model=None,
        dataloader=None,
        save_dir=Path(''),
        plots=True,
        overlap=False,
        mask_downsample_ratio=1,
        compute_loss=None,
        callbacks=Callbacks(),
):
    if save_json:
        check_requirements(['pycocotools'])
        process = process_mask_upsample  # more accurate
    else:
        process = process_mask  # faster

    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
        half &= device.type != 'cpu'  # half precision only supported on CUDA
        model.half() if half else model.float()
        nm = de_parallel(model).model[-1].nm  # number of masks
    else:  # called directly
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

        # Load model
        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
        imgsz = check_img_size(imgsz, s=stride)  # check image size
        half = model.fp16  # FP16 supported on limited backends with CUDA
        nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32  # number of masks
        if engine:
            batch_size = model.batch_size
        else:
            device = model.device
            if not (pt or jit):
                batch_size = 1  # export.py models default to batch-size 1
                LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')

        # Data
        data = check_dataset(data)  # check

    # Configure
    model.eval()
    cuda = device.type != 'cpu'
    #is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt')  # COCO dataset
    is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt')  # COCO dataset
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    stuff_names = data.get('stuff_names', [])  # names of stuff classes
    stuff_nc = len(stuff_names)  # number of stuff classes
    iouv = torch.linspace(0.5, 0.95, 10, device=device)  # iou vector for mAP@0.5:0.95
    niou = iouv.numel()

    # Semantic Segmentation
    img_id_list = []

    # Dataloader
    if not training:
        if pt and not single_cls:  # check --weights are trained on --data
            ncm = model.model.nc
            assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
                              f'classes). Pass correct combination of --weights and --data that are trained together.'
        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz))  # warmup
        pad, rect = (0.0, False) if task == 'speed' else (0.5, pt)  # square inference for benchmarks
        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task],
                                       imgsz,
                                       batch_size,
                                       stride,
                                       single_cls,
                                       pad=pad,
                                       rect=rect,
                                       workers=workers,
                                       prefix=colorstr(f'{task}: '),
                                       overlap_mask=overlap,
                                       mask_downsample_ratio=mask_downsample_ratio)[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = model.names if hasattr(model, 'names') else model.module.names  # get class names
    if isinstance(names, (list, tuple)):  # old format
        names = dict(enumerate(names))
    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
    s = ('%22s' + '%11s' * 12) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P", "R",
                                  "mAP50", "mAP50-95)", 'S(MIoU', 'FWIoU)')
    dt = Profile(), Profile(), Profile()
    metrics = Metrics()
    semantic_metrics = Semantic_Metrics(nc = (nc + stuff_nc), device = device)
    loss = torch.zeros(6, device=device)
    jdict, stats = [], []
    semantic_jdict = []
    # callbacks.run('on_val_start')
    pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT)  # progress bar
    for batch_i, (im, targets, paths, shapes, masks, semasks) in enumerate(pbar):
        # callbacks.run('on_val_batch_start')
        with dt[0]:
            if cuda:
                im = im.to(device, non_blocking=True)
                targets = targets.to(device)
                masks = masks.to(device)
                semasks = semasks.to(device)
            masks = masks.float()
            semasks = semasks.float()
            im = im.half() if half else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            nb, _, height, width = im.shape  # batch size, channels, height, width

        # Inference
        with dt[1]:
            preds, train_out = model(im)# if compute_loss else (*model(im, augment=augment)[:2], None)
            #train_out, preds, protos = p if len(p) == 3 else p[1]
            #preds = p
            #train_out = p[1][0] if len(p[1]) == 3 else p[0]
            # protos = train_out[-1]
            #print(preds.shape)
            #print(train_out[0].shape)
            #print(train_out[1].shape)
            #print(train_out[2].shape)
            _, pred_masks, protos, psemasks = train_out

        # Loss
        if compute_loss:
            loss += compute_loss(train_out, targets, masks, semasks = semasks)[1]  # box, obj, cls

        # NMS
        targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
        with dt[2]:
            preds = non_max_suppression(preds,
                                        conf_thres,
                                        iou_thres,
                                        labels=lb,
                                        multi_label=True,
                                        agnostic=single_cls,
                                        max_det=max_det,
                                        nm=nm)

        # Metrics
        plot_masks = []  # masks for plotting
        plot_semasks = []  # masks for plotting

        if training:
            semantic_metrics.update(psemasks, semasks)
        else:
            _, _, smh, smw = semasks.shape
            semantic_metrics.update(torch.nn.functional.interpolate(psemasks, size = (smh, smw), mode = 'bilinear', align_corners = False), semasks)

        if plots and batch_i < 3:
            plot_semasks.append(psemasks.clone().detach().cpu())

        for si, (pred, proto, psemask) in enumerate(zip(preds, protos, psemasks)):
            labels = targets[targets[:, 0] == si, 1:]
            nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
            path, shape = Path(paths[si]), shapes[si][0]
            image_id = path.stem
            img_id_list.append(image_id)
            correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
            correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
            seen += 1

            if npr == 0:
                if nl:
                    stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
                    if plots:
                        confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
            else:
                # Masks
                midx = [si] if overlap else targets[:, 0] == si
                gt_masks = masks[midx]
                pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])

                # Predictions
                if single_cls:
                    pred[:, 5] = 0
                predn = pred.clone()
                scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred

                # Evaluate
                if nl:
                    tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                    scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
                    labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
                    correct_bboxes = process_batch(predn, labelsn, iouv)
                    correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
                    if plots:
                        confusion_matrix.process_batch(predn, labelsn)
                stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0]))  # (conf, pcls, tcls)

                pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
                if plots and batch_i < 3:
                    plot_masks.append(pred_masks[:15].cpu())  # filter top 15 to plot

                # Save/log
                if save_txt:
                    save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
                if save_json:
                    pred_masks = scale_image(im[si].shape[1:],
                                            pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
                    save_one_json(predn, jdict, path, class_map, pred_masks)  # append to COCO-JSON dictionary
                # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])

            # Semantic Segmentation
            h0, w0 = shape

            # resize
            _, mask_h, mask_w = psemask.shape
            h_ratio = mask_h / h0
            w_ratio = mask_w / w0

            if h_ratio == w_ratio:
                psemask = torch.nn.functional.interpolate(psemask[None, :], size = (h0, w0), mode = 'bilinear', align_corners = False)
            else:
                transform = transforms.CenterCrop((h0, w0))

                if (1 != h_ratio) and (1 != w_ratio):
                    h_new = h0 if (h_ratio < w_ratio) else int(mask_h / w_ratio)
                    w_new = w0 if (h_ratio > w_ratio) else int(mask_w / h_ratio)
                    psemask = torch.nn.functional.interpolate(psemask[None, :], size = (h_new, w_new), mode = 'bilinear', align_corners = False)

                psemask = transform(psemask)

            psemask = torch.squeeze(psemask)

            nc, h, w = psemask.shape

            semantic_mask = torch.flatten(psemask, start_dim = 1).permute(1, 0) # class x h x w -> (h x w) x class

            max_idx = semantic_mask.argmax(1)
            output_masks = torch.zeros(semantic_mask.shape).scatter(1, max_idx.cpu().unsqueeze(1), 1.0) # one hot: (h x w) x class
            output_masks = torch.reshape(output_masks.permute(1, 0), (nc, h, w)) # (h x w) x class -> class x h x w
            psemask = output_masks.to(device = device)

            # TODO: check is_coco
            instances_ids = getCocoIds(name = 'instances')
            stuff_mask = torch.zeros((h, w), device = device)
            check_semantic_mask = False
            for idx, pred_semantic_mask in enumerate(psemask):
                category_id = int(getMappingId(idx))
                if 183 == category_id:
                    # set all non-stuff pixels to other
                    pred_semantic_mask = (torch.logical_xor(stuff_mask, torch.ones((h, w), device = device))).int()

                # ignore the classes which all zeros / unlabeled class
                if (0 >= torch.max(pred_semantic_mask)) or (0 >= category_id):
                    continue

                if category_id not in instances_ids:
                    # record all stuff mask
                    stuff_mask = torch.logical_or(stuff_mask, pred_semantic_mask)

                if (category_id not in instances_ids):
                    rle = maskUtils.encode(np.asfortranarray(pred_semantic_mask.cpu(), dtype = np.uint8))
                    rle['counts'] = rle['counts'].decode('utf-8')

                    temp_d = {
                        'image_id': int(image_id) if image_id.isnumeric() else image_id,
                        'category_id': category_id,
                        'segmentation': rle,
                        'score': 1
                    }

                    semantic_jdict.append(temp_d)
                    check_semantic_mask = True

            if not check_semantic_mask:
                # append a other mask for evaluation if the image without any mask
                other_mask = (torch.ones((h, w), device = device)).int()

                rle = maskUtils.encode(np.asfortranarray(other_mask.cpu(), dtype = np.uint8))
                rle['counts'] = rle['counts'].decode('utf-8')

                temp_d = {
                    'image_id': int(image_id) if image_id.isnumeric() else image_id,
                    'category_id': 183,
                    'segmentation': rle,
                    'score': 1
                }

                semantic_jdict.append(temp_d)

        # Plot images
        if plots and batch_i < 3:
            if len(plot_masks):
                plot_masks = torch.cat(plot_masks, dim=0)
            if len(plot_semasks):
                plot_semasks = torch.cat(plot_semasks, dim = 0)
            plot_images_and_masks(im, targets, masks, semasks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
            plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, plot_semasks, paths,
                                  save_dir / f'val_batch{batch_i}_pred.jpg', names)  # pred

        # callbacks.run('on_val_batch_end')

    # Compute metrics
    stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
        metrics.update(results)
    nt = np.bincount(stats[4].astype(int), minlength=nc)  # number of targets per class

    # Print results
    pf = '%22s' + '%11i' * 2 + '%11.3g' * 10  # print format
    LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results(), *semantic_metrics.results()))
    if nt.sum() == 0:
        LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(metrics.ap_class_index):
            LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i), *semantic_metrics.results()))

    # Print speeds
    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
    if not training:
        shape = (batch_size, 3, imgsz, imgsz)
        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
    # callbacks.run('on_val_end')

    mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
    miou_sem, fwiou_sem = semantic_metrics.results()
    semantic_metrics.reset()

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
        anno_path = Path(data.get('path', '../coco'))
        anno_json = str(anno_path / 'annotations/instances_val2017.json')  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        semantic_anno_json = str(anno_path / 'annotations/stuff_val2017.json')  # annotations json
        semantic_pred_json = str(save_dir / f"{w}_predictions_stuff.json")  # predictions json
        LOGGER.info(f'\nsaving {semantic_pred_json}...')
        with open(semantic_pred_json, 'w') as f:
            json.dump(semantic_jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            results = []
            for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'):
                if is_coco:
                    eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files]  # img ID to evaluate
                eval.evaluate()
                eval.accumulate()
                eval.summarize()
                results.extend(eval.stats[:2])  # update results (mAP@0.5:0.95, mAP@0.5)
            map_bbox, map50_bbox, map_mask, map50_mask = results

            # Semantic Segmentation
            from utils.stuff_seg.cocostuffeval import COCOStuffeval

            LOGGER.info(f'\nEvaluating pycocotools stuff... ')
            imgIds = [int(x) for x in img_id_list]

            stuffGt = COCO(semantic_anno_json)  # initialize COCO ground truth api
            stuffDt = stuffGt.loadRes(semantic_pred_json)  # initialize COCO pred api

            cocoStuffEval = COCOStuffeval(stuffGt, stuffDt)
            cocoStuffEval.params.imgIds = imgIds  # image IDs to evaluate
            cocoStuffEval.evaluate()
            stats, statsClass = cocoStuffEval.summarize()
            stuffIds = getCocoIds(name = 'stuff')
            title = ' {:<5} | {:^6} | {:^6} '.format('class', 'iou', 'macc') if (0 >= len(stuff_names)) else \
                    ' {:<5} | {:<20} | {:^6} | {:^6} '.format('class', 'class name', 'iou', 'macc')
            print(title)
            for idx, (iou, macc) in enumerate(zip(statsClass['ious'], statsClass['maccs'])):
                id = (idx + 1)
                if id not in stuffIds:
                    continue
                content = ' {:<5} | {:0.4f} | {:0.4f} '.format(str(id), iou, macc) if (0 >= len(stuff_names)) else \
                            ' {:<5} | {:<20} | {:0.4f} | {:0.4f} '.format(str(id), str(stuff_names[getMappingIndex(id, name = 'stuff')]), iou, macc)
                print(content)

        except Exception as e:
            LOGGER.info(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask, miou_sem, fwiou_sem
    return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-pan.yaml', help='dataset.yaml path')
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo-pan.pt', help='model path(s)')
    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
    parser.add_argument('--project', default=ROOT / 'runs/val-pan', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.data = check_yaml(opt.data)  # check YAML
    # opt.save_json |= opt.data.endswith('coco.yaml')
    opt.save_txt |= opt.save_hybrid
    print_args(vars(opt))
    return opt


def main(opt):
    #check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))

    if opt.task in ('train', 'val', 'test'):  # run normally
        if opt.conf_thres > 0.001:  # https://github.com/
            LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
        if opt.save_hybrid:
            LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone')
        run(**vars(opt))

    else:
        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
        opt.half = torch.cuda.is_available() and opt.device != 'cpu'  # FP16 for fastest results
        if opt.task == 'speed':  # speed benchmarks
            # python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
            for opt.weights in weights:
                run(**vars(opt), plots=False)

        elif opt.task == 'study':  # speed vs mAP benchmarks
            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
            for opt.weights in weights:
                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
                for opt.imgsz in x:  # img-size
                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
                    r, _, t = run(**vars(opt), plots=False)
                    y.append(r + t)  # results and times
                np.savetxt(f, y, fmt='%10.4g')  # save
            os.system('zip -r study.zip study_*.txt')
            plot_val_study(x=x)  # plot


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)