Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,801 Bytes
a713a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import json
from time import time
import argparse
import logging
import os
from pathlib import Path
import math
import numpy as np
from PIL import Image
from copy import deepcopy
import torch
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration, set_seed
from diffusers.optimization import get_scheduler
from accelerate.utils import DistributedType
from peft import LoraConfig, set_peft_model_state_dict, PeftModel, get_peft_model
from peft.utils import get_peft_model_state_dict
from huggingface_hub import snapshot_download
from safetensors.torch import save_file
from diffusers.models import AutoencoderKL
from OmniGen import OmniGen, OmniGenProcessor
from OmniGen.train_helper import DatasetFromJson, TrainDataCollator
from OmniGen.train_helper import training_losses
from OmniGen.utils import (
create_logger,
update_ema,
requires_grad,
center_crop_arr,
crop_arr,
vae_encode,
vae_encode_list
)
def main(args):
# Setup accelerator:
from accelerate import DistributedDataParallelKwargs as DDPK
kwargs = DDPK(find_unused_parameters=False)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_dir=args.results_dir,
kwargs_handlers=[kwargs],
)
device = accelerator.device
accelerator.init_trackers("tensorboard_log", config=args.__dict__)
# Setup an experiment folder:
checkpoint_dir = f"{args.results_dir}/checkpoints" # Stores saved model checkpoints
logger = create_logger(args.results_dir)
if accelerator.is_main_process:
os.makedirs(checkpoint_dir, exist_ok=True)
logger.info(f"Experiment directory created at {args.results_dir}")
json.dump(args.__dict__, open(os.path.join(args.results_dir, 'train_args.json'), 'w'))
# Create model:
if not os.path.exists(args.model_name_or_path):
cache_folder = os.getenv('HF_HUB_CACHE')
args.model_name_or_path = snapshot_download(repo_id=args.model_name_or_path,
cache_dir=cache_folder,
ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5'])
logger.info(f"Downloaded model to {args.model_name_or_path}")
model = OmniGen.from_pretrained(args.model_name_or_path)
model.llm.config.use_cache = False
model.llm.gradient_checkpointing_enable()
model = model.to(device)
if args.vae_path is None:
print(args.model_name_or_path)
vae_path = os.path.join(args.model_name_or_path, "vae")
if os.path.exists(vae_path):
vae = AutoencoderKL.from_pretrained(vae_path).to(device)
else:
logger.info("No VAE found in model, downloading stabilityai/sdxl-vae from HF")
logger.info("If you have VAE in local folder, please specify the path with --vae_path")
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae").to(device)
else:
vae = AutoencoderKL.from_pretrained(args.vae_path).to(device)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(dtype=torch.float32)
model.to(weight_dtype)
processor = OmniGenProcessor.from_pretrained(args.model_name_or_path)
requires_grad(vae, False)
if args.use_lora:
if accelerator.distributed_type == DistributedType.FSDP:
raise NotImplementedError("FSDP does not support LoRA")
requires_grad(model, False)
transformer_lora_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_rank,
init_lora_weights="gaussian",
target_modules=["qkv_proj", "o_proj"],
)
model.llm.enable_input_require_grads()
model = get_peft_model(model, transformer_lora_config)
model.to(weight_dtype)
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
for n,p in model.named_parameters():
print(n, p.requires_grad)
opt = torch.optim.AdamW(transformer_lora_parameters, lr=args.lr, weight_decay=args.adam_weight_decay)
else:
opt = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.adam_weight_decay)
ema = None
if args.use_ema:
ema = deepcopy(model).to(device) # Create an EMA of the model for use after training
requires_grad(ema, False)
# Setup data:
crop_func = crop_arr
if not args.keep_raw_resolution:
crop_func = center_crop_arr
image_transform = transforms.Compose([
transforms.Lambda(lambda pil_image: crop_func(pil_image, args.max_image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
dataset = DatasetFromJson(json_file=args.json_file,
image_path=args.image_path,
processer=processor,
image_transform=image_transform,
max_input_length_limit=args.max_input_length_limit,
condition_dropout_prob=args.condition_dropout_prob,
keep_raw_resolution=args.keep_raw_resolution
)
collate_fn = TrainDataCollator(pad_token_id=processor.text_tokenizer.eos_token_id, hidden_size=model.llm.config.hidden_size, keep_raw_resolution=args.keep_raw_resolution)
loader = DataLoader(
dataset,
collate_fn=collate_fn,
batch_size=args.batch_size_per_device,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
prefetch_factor=2,
)
if accelerator.is_main_process:
logger.info(f"Dataset contains {len(dataset):,}")
num_update_steps_per_epoch = math.ceil(len(loader) / args.gradient_accumulation_steps)
max_train_steps = args.epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=opt,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=max_train_steps * args.gradient_accumulation_steps,
)
# Prepare models for training:
model.train() # important! This enables embedding dropout for classifier-free guidance
if ema is not None:
update_ema(ema, model, decay=0) # Ensure EMA is initialized with synced weights
ema.eval() # EMA model should always be in eval mode
if ema is not None:
model, ema = accelerator.prepare(model, ema)
else:
model = accelerator.prepare(model)
opt, loader, lr_scheduler = accelerator.prepare(opt, loader, lr_scheduler)
# Variables for monitoring/logging purposes:
train_steps, log_steps = 0, 0
running_loss = 0
start_time = time()
if accelerator.is_main_process:
logger.info(f"Training for {args.epochs} epochs...")
for epoch in range(args.epochs):
if accelerator.is_main_process:
logger.info(f"Beginning epoch {epoch}...")
for data in loader:
with accelerator.accumulate(model):
with torch.no_grad():
output_images = data['output_images']
input_pixel_values = data['input_pixel_values']
if isinstance(output_images, list):
output_images = vae_encode_list(vae, output_images, weight_dtype)
if input_pixel_values is not None:
input_pixel_values = vae_encode_list(vae, input_pixel_values, weight_dtype)
else:
output_images = vae_encode(vae, output_images, weight_dtype)
if input_pixel_values is not None:
input_pixel_values = vae_encode(vae, input_pixel_values, weight_dtype)
model_kwargs = dict(input_ids=data['input_ids'], input_img_latents=input_pixel_values, input_image_sizes=data['input_image_sizes'], attention_mask=data['attention_mask'], position_ids=data['position_ids'], padding_latent=data['padding_images'], past_key_values=None, return_past_key_values=False)
loss_dict = training_losses(model, output_images, model_kwargs)
loss = loss_dict["loss"].mean()
running_loss += loss.item()
accelerator.backward(loss)
if args.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
opt.step()
lr_scheduler.step()
opt.zero_grad()
log_steps += 1
train_steps += 1
accelerator.log({"training_loss": loss.item()}, step=train_steps)
if train_steps % args.gradient_accumulation_steps == 0:
if accelerator.sync_gradients and ema is not None:
update_ema(ema, model)
if train_steps % (args.log_every * args.gradient_accumulation_steps) == 0 and train_steps > 0:
torch.cuda.synchronize()
end_time = time()
steps_per_sec = log_steps / args.gradient_accumulation_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(running_loss / log_steps, device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / accelerator.num_processes
if accelerator.is_main_process:
cur_lr = opt.param_groups[0]["lr"]
logger.info(f"(step={int(train_steps/args.gradient_accumulation_steps):07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}, Epoch: {train_steps/len(loader)}, LR: {cur_lr}")
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time()
if train_steps % (args.ckpt_every * args.gradient_accumulation_steps) == 0 and train_steps > 0:
if accelerator.distributed_type == DistributedType.FSDP:
state_dict = accelerator.get_state_dict(model)
ema_state_dict = accelerator.get_state_dict(ema) if ema is not None else None
else:
if not args.use_lora:
state_dict = model.module.state_dict()
ema_state_dict = accelerator.get_state_dict(ema) if ema is not None else None
if accelerator.is_main_process:
if args.use_lora:
checkpoint_path = f"{checkpoint_dir}/{int(train_steps/args.gradient_accumulation_steps):07d}/"
os.makedirs(checkpoint_path, exist_ok=True)
model.module.save_pretrained(checkpoint_path)
else:
checkpoint_path = f"{checkpoint_dir}/{int(train_steps/args.gradient_accumulation_steps):07d}/"
os.makedirs(checkpoint_path, exist_ok=True)
torch.save(state_dict, os.path.join(checkpoint_path, "model.pt"))
processor.text_tokenizer.save_pretrained(checkpoint_path)
model.llm.config.save_pretrained(checkpoint_path)
if ema_state_dict is not None:
checkpoint_path = f"{checkpoint_dir}/{int(train_steps/args.gradient_accumulation_steps):07d}_ema"
os.makedirs(checkpoint_path, exist_ok=True)
torch.save(state_dict, os.path.join(checkpoint_path, "model.pt"))
processor.text_tokenizer.save_pretrained(checkpoint_path)
model.llm.config.save_pretrained(checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
dist.barrier()
accelerator.end_training()
model.eval()
if accelerator.is_main_process:
logger.info("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--results_dir", type=str, default="results")
parser.add_argument("--model_name_or_path", type=str, default="OmniGen")
parser.add_argument("--json_file", type=str)
parser.add_argument("--image_path", type=str, default=None)
parser.add_argument("--epochs", type=int, default=1400)
parser.add_argument("--batch_size_per_device", type=int, default=1)
parser.add_argument("--vae_path", type=str, default=None)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--log_every", type=int, default=100)
parser.add_argument("--ckpt_every", type=int, default=20000)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--max_input_length_limit", type=int, default=1024)
parser.add_argument("--condition_dropout_prob", type=float, default=0.1)
parser.add_argument("--adam_weight_decay", type=float, default=0.0)
parser.add_argument(
"--keep_raw_resolution",
action="store_true",
help="multiple_resolutions",
)
parser.add_argument("--max_image_size", type=int, default=1344)
parser.add_argument(
"--use_lora",
action="store_true",
)
parser.add_argument(
"--lora_rank",
type=int,
default=8
)
parser.add_argument(
"--use_ema",
action="store_true",
help="Whether or not to use ema.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=1000, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
args = parser.parse_args()
assert args.max_image_size % 16 == 0, "Image size must be divisible by 16."
main(args)
|