File size: 6,765 Bytes
291ee34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
"""
Script to perform the inference
Reference: https://huggingface.co/spaces/anantgupta129/PyTorch-YoloV3-PascolVOC-GradCAM/tree/main
"""
import random
from typing import List
import cv2
import torch
import numpy as np
import albumentations as A
from albumentations.pytorch import ToTensorV2
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.base_cam import BaseCAM
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
import config
from utils import cells_to_bboxes, non_max_suppression
IMAGE_SIZE = config.IMAGE_SIZE
scaled_anchors = config.SCALED_ANCHORS
_transforms = A.Compose(
[
A.LongestMaxSize(max_size=IMAGE_SIZE),
A.PadIfNeeded(
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
),
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
ToTensorV2(),
],
)
def draw_predictions(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray:
"""Plots predicted bounding boxes on the image"""
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
im = np.array(image)
height, width, _ = im.shape
bbox_thick = int(0.6 * (height + width) / 600)
# Create a Rectangle patch
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = box[0]
conf = box[1]
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
x1 = int(upper_left_x * width)
y1 = int(upper_left_y * height)
x2 = x1 + int(box[2] * width)
y2 = y1 + int(box[3] * height)
cv2.rectangle(
image,
(x1, y1), (x2, y2),
color=colors[int(class_pred)],
thickness=bbox_thick
)
text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
c3 = (x1 + t_size[0], y1 - t_size[1] - 3)
cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
cv2.putText(
image,
text,
(x1, y1 - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
(0, 0, 0),
bbox_thick // 2,
lineType=cv2.LINE_AA,
)
return image
class YoloCAM(BaseCAM):
def __init__(self, model, target_layers, use_cuda=False,
reshape_transform=None):
super(YoloCAM, self).__init__(model,
target_layers,
use_cuda,
reshape_transform,
uses_gradients=False)
def forward(self,
input_tensor: torch.Tensor,
scaled_anchors: torch.Tensor,
targets: List[torch.nn.Module],
eigen_smooth: bool = False) -> np.ndarray:
if self.cuda:
input_tensor = input_tensor.cuda()
if self.compute_input_gradient:
input_tensor = torch.autograd.Variable(input_tensor,
requires_grad=True)
outputs = self.activations_and_grads(input_tensor)
if targets is None:
bboxes = [[] for _ in range(1)]
for i in range(3):
batch_size, A, S, _, _ = outputs[i].shape
anchor = scaled_anchors[i]
boxes_scale_i = cells_to_bboxes(
outputs[i], anchor, S=S, is_preds=True
)
for idx, (box) in enumerate(boxes_scale_i):
bboxes[idx] += box
nms_boxes = non_max_suppression(
bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint",
)
# target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
target_categories = [box[0] for box in nms_boxes]
targets = [ClassifierOutputTarget(
category) for category in target_categories]
if self.uses_gradients:
self.model.zero_grad()
loss = sum([target(output)
for target, output in zip(targets, outputs)])
loss.backward(retain_graph=True)
# In most of the saliency attribution papers, the saliency is
# computed with a single target layer.
# Commonly it is the last convolutional layer.
# Here we support passing a list with multiple target layers.
# It will compute the saliency image for every image,
# and then aggregate them (with a default mean aggregation).
# This gives you more flexibility in case you just want to
# use all conv layers for example, all Batchnorm layers,
# or something else.
cam_per_layer = self.compute_cam_per_layer(input_tensor,
targets,
eigen_smooth)
return self.aggregate_multi_layers(cam_per_layer)
def get_cam_image(self,
input_tensor,
target_layer,
target_category,
activations,
grads,
eigen_smooth):
return get_2d_projection(activations)
@torch.inference_mode()
def predict(cam,
model,
image: np.ndarray,
iou_thresh: float = 0.5,
thresh: float = 0.4,
show_cam: bool = False,
transparency: float = 0.5,
) -> List[np.ndarray]:
transformed_image = _transforms(image=image)["image"].unsqueeze(0)
output = model(transformed_image)
bboxes = [[] for _ in range(1)]
for i in range(3):
batch_size, A, S, _, _ = output[i].shape
anchor = scaled_anchors[i]
boxes_scale_i = cells_to_bboxes(
output[i], anchor, S=S, is_preds=True
)
for idx, (box) in enumerate(boxes_scale_i):
bboxes[idx] += box
nms_boxes = non_max_suppression(
bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
)
plot_img = draw_predictions(image.copy(), nms_boxes, class_labels=config.PASCAL_CLASSES)
if not show_cam:
return [plot_img]
grayscale_cam = cam(transformed_image, scaled_anchors)[0, :, :]
img = cv2.resize(image, (416, 416))
img = np.float32(img) / 255
cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency)
return [plot_img, cam_image]
|