File size: 6,765 Bytes
291ee34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""
Script to perform the inference
Reference: https://huggingface.co/spaces/anantgupta129/PyTorch-YoloV3-PascolVOC-GradCAM/tree/main
"""
import random
from typing import List

import cv2
import torch
import numpy as np
import albumentations as A
from albumentations.pytorch import ToTensorV2
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.base_cam import BaseCAM
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget

import config
from utils import cells_to_bboxes, non_max_suppression


IMAGE_SIZE = config.IMAGE_SIZE
scaled_anchors = config.SCALED_ANCHORS

_transforms = A.Compose(
    [
        A.LongestMaxSize(max_size=IMAGE_SIZE),
        A.PadIfNeeded(
            min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
        ),
        A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
        ToTensorV2(),
    ],
)


def draw_predictions(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray:
    """Plots predicted bounding boxes on the image"""

    colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]

    im = np.array(image)
    height, width, _ = im.shape
    bbox_thick = int(0.6 * (height + width) / 600)

    # Create a Rectangle patch
    for box in boxes:
        assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
        class_pred = box[0]
        conf = box[1]
        box = box[2:]
        upper_left_x = box[0] - box[2] / 2
        upper_left_y = box[1] - box[3] / 2

        x1 = int(upper_left_x * width)
        y1 = int(upper_left_y * height)

        x2 = x1 + int(box[2] * width)
        y2 = y1 + int(box[3] * height)

        cv2.rectangle(
            image,
            (x1, y1), (x2, y2),
            color=colors[int(class_pred)],
            thickness=bbox_thick
        )
        text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
        t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
        c3 = (x1 + t_size[0], y1 - t_size[1] - 3)

        cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
        cv2.putText(
            image,
            text,
            (x1, y1 - 2),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.7,
            (0, 0, 0),
            bbox_thick // 2,
            lineType=cv2.LINE_AA,
        )

    return image


class YoloCAM(BaseCAM):
    def __init__(self, model, target_layers, use_cuda=False,
                 reshape_transform=None):
        super(YoloCAM, self).__init__(model,
                                      target_layers,
                                      use_cuda,
                                      reshape_transform,
                                      uses_gradients=False)

    def forward(self,
                input_tensor: torch.Tensor,
                scaled_anchors: torch.Tensor,
                targets: List[torch.nn.Module],
                eigen_smooth: bool = False) -> np.ndarray:

        if self.cuda:
            input_tensor = input_tensor.cuda()

        if self.compute_input_gradient:
            input_tensor = torch.autograd.Variable(input_tensor,
                                                   requires_grad=True)

        outputs = self.activations_and_grads(input_tensor)
        if targets is None:
            bboxes = [[] for _ in range(1)]
            for i in range(3):
                batch_size, A, S, _, _ = outputs[i].shape
                anchor = scaled_anchors[i]
                boxes_scale_i = cells_to_bboxes(
                    outputs[i], anchor, S=S, is_preds=True
                )
                for idx, (box) in enumerate(boxes_scale_i):
                    bboxes[idx] += box

            nms_boxes = non_max_suppression(
                bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint",
            )
            # target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
            target_categories = [box[0] for box in nms_boxes]
            targets = [ClassifierOutputTarget(
                category) for category in target_categories]

        if self.uses_gradients:
            self.model.zero_grad()
            loss = sum([target(output)
                        for target, output in zip(targets, outputs)])
            loss.backward(retain_graph=True)

        # In most of the saliency attribution papers, the saliency is
        # computed with a single target layer.
        # Commonly it is the last convolutional layer.
        # Here we support passing a list with multiple target layers.
        # It will compute the saliency image for every image,
        # and then aggregate them (with a default mean aggregation).
        # This gives you more flexibility in case you just want to
        # use all conv layers for example, all Batchnorm layers,
        # or something else.
        cam_per_layer = self.compute_cam_per_layer(input_tensor,
                                                   targets,
                                                   eigen_smooth)
        return self.aggregate_multi_layers(cam_per_layer)

    def get_cam_image(self,
                      input_tensor,
                      target_layer,
                      target_category,
                      activations,
                      grads,
                      eigen_smooth):
        return get_2d_projection(activations)


@torch.inference_mode()
def predict(cam,
            model,
            image: np.ndarray,
            iou_thresh: float = 0.5,
            thresh: float = 0.4,
            show_cam: bool = False,
            transparency: float = 0.5,
            ) -> List[np.ndarray]:
    transformed_image = _transforms(image=image)["image"].unsqueeze(0)
    output = model(transformed_image)

    bboxes = [[] for _ in range(1)]
    for i in range(3):
        batch_size, A, S, _, _ = output[i].shape
        anchor = scaled_anchors[i]
        boxes_scale_i = cells_to_bboxes(
            output[i], anchor, S=S, is_preds=True
        )
        for idx, (box) in enumerate(boxes_scale_i):
            bboxes[idx] += box

    nms_boxes = non_max_suppression(
        bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
    )
    plot_img = draw_predictions(image.copy(), nms_boxes, class_labels=config.PASCAL_CLASSES)
    if not show_cam:
        return [plot_img]

    grayscale_cam = cam(transformed_image, scaled_anchors)[0, :, :]
    img = cv2.resize(image, (416, 416))
    img = np.float32(img) / 255
    cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency)
    return [plot_img, cam_image]